Perfect teleportation and superdense coding with W states

True tripartite entanglement of the state of a system of three qubits can be classified on the basis of stochastic local operations and classical communications. Such states can be classified into two categories: GHZ states and W states. It is known that GHZ states can be used for teleportation and superdense coding, but the prototype W state cannot be. However, we show that there is a class of W states that can be used for perfect teleportation and superdense coding.

[1]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[2]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[3]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[4]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[5]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[6]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[7]  S. Popescu,et al.  Thermodynamics and the measure of entanglement , 1996, quant-ph/9610044.

[8]  M. Bourennane,et al.  Quantum teleportation using three-particle entanglement , 1998 .

[9]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[10]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[11]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[12]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[13]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[14]  Arun Kumar Pati Assisted cloning and orthogonal complementing of an unknown state , 2000 .

[15]  Guang-Can Guo,et al.  Probabilistic dense coding and teleportation , 2000 .

[16]  Arun K. Pati,et al.  Probabilistic Quantum Teleportation , 2002, quant-ph/0210004.

[17]  Adan Cabello Bell's theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger and W states , 2002 .

[18]  Guang-Can Guo,et al.  Scheme for preparation of the W state via cavity quantum electrodynamics , 2002 .

[19]  G. Agarwal,et al.  Preparation of W, GHZ, and two-qutrit states using bimodal cavities , 2003, quant-ph/0311137.

[20]  V. N. Gorbachev,et al.  On preparation of the entangled W-states from atomic ensembles , 2003 .

[21]  J. Joo,et al.  Quantum teleportation via a W state , 2003, quant-ph/0306175.

[22]  V. N. Gorbachev,et al.  Can the states of the W-class be suitable for teleportation , 2002, quant-ph/0203028.

[23]  A. Pati,et al.  Probabilistic teleportation and quantum operation , 2004 .

[24]  P. Agrawal,et al.  Probabilistic superdense coding , 2005 .

[25]  Gustavo Rigolin,et al.  Generalized teleportation protocol , 2006 .

[26]  Probabilistic dense coding using a non-symmetric multipartite quantum channel , 2006, quant-ph/0601126.

[27]  Deterministic and unambiguous dense coding , 2005, quant-ph/0512169.

[28]  Optimal dense coding with arbitrary pure entangled states (5 pages) , 2006, quant-ph/0604149.

[29]  New Journal of Physics The , 2007 .