Markovian Fusion Approach to Robust Unsupervised Change Detection in Remotely Sensed Imagery

The most common methodology to carry out an automatic unsupervised change detection in remotely sensed imagery is to find the best global threshold in the histogram of the so-called difference image. The unsupervised nature of the change detection process, however, makes it nontrivial to find the most appropriate thresholding algorithm for a given difference image, because the best global threshold depends on its statistical peculiarities, which are often unknown. In this letter, a solution to this issue based on the fusion of an ensemble of different thresholding algorithms through a Markov random field framework is proposed. Experiments conducted on a set of five real remote sensing images acquired by different sensors and referring to different kinds of changes show the high robustness of the proposed unsupervised change detection approach