Distribution dependent reflecting stochastic differential equations

To characterize the Neumann problem for nonlinear Fokker-Planck equations, we investigate distribution dependent reflecting SDEs (DDRSDEs) in a domain. We first prove the well-posedness and establish functional inequalities for reflecting SDEs with singular drifts, then extend these results to DDRSDEs with singular or monotone coefficients, for which a general criterion deducing the well-posedness of DDRSDEs from that of reflecting SDEs is established. Moreover, three different types of exponential ergodicity are derived for DDRSDEs under dissipative, partially dissipative, and fully non-dissipative conditions respectively.

[1]  Daniel Adams,et al.  Large Deviations and Exit-times for reflected McKean-Vlasov equations with self-stabilizing terms and superlinear drifts , 2020, Stochastic Processes and their Applications.

[2]  Xicheng Zhang Weak Solutions of McKean–Vlasov SDEs with Supercritical Drifts , 2020, Communications in Mathematics and Statistics.

[3]  H. McKean,et al.  A CLASS OF MARKOV PROCESSES ASSOCIATED WITH NONLINEAR PARABOLIC EQUATIONS , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Longjie Xie,et al.  Ergodicity of stochastic differential equations with jumps and singular coefficients , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[5]  Feng-Yu Wang Probability distance inequalities on Riemannian manifolds and path spaces , 2004 .

[6]  Dario Trevisan,et al.  Well-posedness of Multidimensional Diffusion Processes with Weakly Differentiable Coefficients , 2015, 1507.01357.

[7]  Anton Thalmaier,et al.  Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds☆ , 2009 .

[8]  Michael Röckner,et al.  Strong solutions of stochastic equations with singular time dependent drift , 2005 .

[9]  Some Results on Stochastic Differential Equations with Reflecting Boundary Conditions , 2004 .

[10]  Liming Wu,et al.  Long-Time Behaviors of Mean-Field Interacting Particle Systems Related to McKean–Vlasov Equations , 2020, Communications in Mathematical Physics.

[11]  Longjie Xie,et al.  Lq(Lp)-theory of stochastic differential equations , 2020 .

[12]  Jian Wang,et al.  Exponential ergodicity for SDEs and McKean–Vlasov processes with Lévy noise , 2019, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[13]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[14]  A. Zvonkin A TRANSFORMATION OF THE PHASE SPACE OF A DIFFUSION PROCESS THAT REMOVES THE DRIFT , 1974 .

[15]  Vladimir I. Bogachev,et al.  Fokker-planck-kolmogorov Equations , 2015 .

[16]  Feng-Yu Wang Harnack inequalities on manifolds with boundary and applications , 2009, 0908.2888.

[17]  M. Hino,et al.  Pathwise Uniqueness and Non-explosion Property of Skorohod SDEs with a Class of Non-Lipschitz Coefficients and Non-smooth Domains , 2020, Journal of Theoretical Probability.

[18]  Viorel Barbu,et al.  From nonlinear Fokker–Planck equations to solutions of distribution dependent SDE , 2018, The Annals of Probability.

[19]  A. Eberle,et al.  Quantitative Harris-type theorems for diffusions and McKean–Vlasov processes , 2016, Transactions of the American Mathematical Society.

[20]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[21]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[22]  Well-Posedness for Singular McKean-Vlasov Stochastic Differential Equations. , 2020 .

[23]  A. Guillin,et al.  Uniform Poincaré and logarithmic Sobolev inequalities for mean field particle systems , 2022, The Annals of Applied Probability.

[24]  Feng-Yu Wang,et al.  Distribution dependent stochastic differential equations , 2016, Frontiers of Mathematics in China.

[25]  E. Caglioti,et al.  A kinetic equation for granular media , 2009 .

[26]  L. Szpruch,et al.  McKean–Vlasov SDEs under measure dependent Lyapunov conditions , 2018, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[27]  On stability and existence of solutions of SDEs with reflection at the boundary , 1997 .

[28]  P. Dupuis,et al.  On oblique derivative problems for fully nonlinear second-order elliptic partial differential equations on nonsmooth domains , 1990 .

[29]  Harnack Inequalities for SDEs with Multiplicative Noise and Non-regular Drift , 2013, 1310.4382.

[30]  A. Veretennikov,et al.  On Ergodic Measures for McKean-Vlasov Stochastic Equations , 2006 .

[31]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[32]  Maria Giovanna Garroni,et al.  Green Functions for Second Order Parabolic Integro-Differential Problems , 1993 .

[33]  Oleg Butkovsky,et al.  On Ergodic Properties of Nonlinear Markov Chains and Stochastic McKean--Vlasov Equations , 2013, 1311.6367.

[34]  N. Portenko,et al.  Generalized Diffusion Processes , 1990 .

[35]  Michael Röckner,et al.  Probabilistic Representation for Solutions to Nonlinear Fokker-Planck Equations , 2018, SIAM J. Math. Anal..

[36]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[37]  S. Bobkov,et al.  Hypercontractivity of Hamilton-Jacobi equations , 2001 .

[38]  Xicheng Zhang Stochastic Homeomorphism Flows of SDEs with Singular Drifts and Sobolev Diffusion Coefficients , 2010, 1010.3403.

[39]  Feng-Yu Wang Distribution-Dependent SDEs for Landau Type Equations , 2016, 1606.05843.

[40]  Yasumasa Saisho,et al.  Stochastic differential equations for multi-dimensional domain with reflecting boundary , 1987 .

[41]  Положительные плотности переходных вероятностей диффузионных процессов@@@Positive Densities of Transition Probabilities of Diffusion Processes , 2008 .

[42]  Estimates of the first Neumann eigenvalue and the log‐Sobolev constant on non‐convex manifolds , 2007 .

[43]  Feng-Yu Wang,et al.  Exponential Convergence in Entropy and Wasserstein Distance for McKean-Vlasov SDEs , 2020, 2010.08950.

[44]  Xing Huang,et al.  Path-distribution dependent SDEs with singular coefficients , 2021 .

[45]  Tusheng Zhang,et al.  Strong solutions to reflecting stochastic differential equations with singular drift , 2020, Stochastic Processes and their Applications.

[46]  Longjie Xie,et al.  $L^q(L^p)$-theory of stochastic differential equations , 2019, 1908.01255.

[47]  Feng-Yu Wang,et al.  Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on nonconvex manifolds , 2009, 0911.1644.

[48]  V. Borkar Controlled diffusion processes , 2005, math/0511077.

[49]  Feng-Yu Wang,et al.  Logarithmic Sobolev inequalities on noncompact Riemannian manifolds , 1997 .