Analysis of the pairwise error probability of non-interleaved codes on the Rayleigh-fading channel

The majority of previous analytical studies of signal-space coding techniques (includes trellis and block codes) on the Rayleigh-fading channel have assumed ideal interleaving. The effect of finite interleaving on the performance of different coding schemes has been studied only by simulation In this paper we first derive a maximum likelihood (ML) decoder for codewords transmitted over a noninterleaved Rayleigh flat fading channel, followed by an exact expression for the pairwise error event probability of such a decoder. It includes phase shift keying (PSK), quadrature amplitude modulation (QAM) signal sets, trellis coded modulation (TCM) and block coded modulation (BCM) schemes, as well as coherent (ideal channel state information) and partially coherent (e.g., differential, pilot tone, etc.) detection. We derive an exact expression for the pairwise event probability in the case of very slow fading-i.e., the fading experienced by all the symbols of the codeword is highly correlated. We also show that the interleaving depth required to optimize code performance for a particular minimum fading bandwidth can be approximated by the first zero of the fading channel's auto-correlation function.