A Particle-Continuum Hybrid Framework for Transport Phenomena and Chemical Reactions in Multicomponent Systems at the Micro and Nanoscale

The particle-continuum hybrid Laplacian method is extended as a framework for modeling all transport phenomena in fluids at the micro and nanoscale including multicomponent mass transfer and chemical reactions. The method is explained, and the micro-to-macro and macro-to-micro coupling steps are discussed. Two techniques for noise reduction (namely, the bonsai box (BB) and the seamless strategy) are discussed. Comparisons with benchmark full-molecular dynamics (MD) cases for micro and nano thermal and reacting flows show excellent agreement and good computational efficiency.

[1]  D. Smith,et al.  Molecular dynamics simulations in the grand canonical ensemble: Formulation of a bias potential for umbrella sampling , 1999 .

[2]  P. Koumoutsakos MULTISCALE FLOW SIMULATIONS USING PARTICLES , 2005 .

[3]  A. Patera,et al.  Heterogeneous Atomistic-Continuum Representations for Dense Fluid Systems , 1997 .

[4]  Dimitris Drikakis,et al.  Multi‐scale computational modelling of flow and heat transfer , 2010 .

[5]  F. Swol,et al.  Ultrathin films under shear , 1991 .

[6]  Duncan A. Lockerby,et al.  A Laplacian-based algorithm for non-isothermal atomistic-continuum hybrid simulation of micro and nano-flows , 2013 .

[7]  Dimitris Drikakis,et al.  A hybrid molecular continuum method using point wise coupling , 2012, Adv. Eng. Softw..

[8]  Giovanni Ciccotti,et al.  Stationary nonequilibrium states by molecular dynamics. II. Newton's law , 1984 .

[9]  O'Connell,et al.  Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  P. Attard,et al.  Grand canonical molecular dynamics , 2003 .

[11]  Duncan A. Lockerby,et al.  A multiscale method for micro/nano flows of high aspect ratio , 2013, J. Comput. Phys..

[12]  Mohamed Gad-el-Hak,et al.  MEMS : Introduction and Fundamentals , 2005 .

[13]  Grant S. Heffelfinger,et al.  Diffusion in Lennard-Jones Fluids Using Dual Control Volume Grand Canonical Molecular Dynamics Simulation (DCV-GCMD) , 1994 .

[14]  E Weinan,et al.  A general strategy for designing seamless multiscale methods , 2009, J. Comput. Phys..

[15]  P. Janmey,et al.  Rheology of Soft Materials , 2010 .

[16]  Sidney Yip,et al.  Coupling continuum to molecular-dynamics simulation: Reflecting particle method and the field estimator , 1998 .

[17]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[18]  Xiaobo Nie,et al.  A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow , 2004, Journal of Fluid Mechanics.

[19]  Bruce J. Palmer,et al.  Alternative Hamiltonian for molecular dynamics simulations in the grand canonical ensemble , 1995 .

[20]  Peter V. Coveney,et al.  Hybrid molecular–continuum fluid dynamics , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Duncan A. Lockerby,et al.  The atomistic‐continuum hybrid taxonomy and the hybrid‐hybrid approach , 2014 .

[22]  F. Swol,et al.  Molecular dynamics and Monte Carlo simulations in the grand canonical ensemble: Local versus global control , 1993 .

[23]  Abdulmajeed A. Mohamad,et al.  A review of the development of hybrid atomistic–continuum methods for dense fluids , 2010 .

[24]  Shiyi Chen,et al.  A continuum-atomistic simulation of heat transfer in micro- and nano-flows , 2007, J. Comput. Phys..

[25]  Zdzislaw Jaworski,et al.  Towards multiscale modelling in product engineering , 2011, Comput. Chem. Eng..

[26]  E. Weinan,et al.  Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics , 2005 .