Organization of the nigrotectospinal pathway in the cat: a light and electron microscopic study

[1]  Akira Mitani,et al.  Direct projections from the dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat , 1987, Brain Research.

[2]  W. Nauta,et al.  The visual cortico-striato-nigral pathway in the rat , 1986, Neuroscience.

[3]  D. Munoz,et al.  Presaccadic burst discharges of tecto-reticulo-spinal neurons in the alert head-free and -fixed cat , 1986, Brain Research.

[4]  N. Mizuno,et al.  Mystacial vibrissae representation within the trigeminal sensory nuclei of the cat , 1986, The Journal of comparative neurology.

[5]  A. Graybiel,et al.  Complementary and non-matching afferent compartments in the cat's superior colliculus: Innervation of the acetylcholinesterase-poor domain of the intermediate gray layer , 1986, Neuroscience.

[6]  E. Garcia-Rill The basal ganglia and the locomotor regions , 1986, Brain Research Reviews.

[7]  M. Williams,et al.  The striatonigral projection and nigrotectal neurons in the rat. A correlated light and electron microscopic study demonstrating a monosynaptic striatal input to identified nigrotectal neurons using a combined degeneration and horseradish peroxidase procedure , 1985, Neuroscience.

[8]  A. Graybiel,et al.  Convergence of afferents from frontal cortex and substantia nigra onto acetylcholinesterase-rich patches of the cat's superior colliculus , 1985, Neuroscience.

[9]  W. C. Hall,et al.  Relationships between the nigrotectal pathway and the cells of origin of the predorsal bundle , 1984, The Journal of comparative neurology.

[10]  M. Wiberg,et al.  The spinomesencephalic tract in the cat: Its cells of origin and termination pattern as demonstrated by the intraaxonal transport method , 1984, Brain Research.

[11]  P. Brodal,et al.  Principles of organization of the corticopontocerebellar projection to crus II in the cat with particular reference to the parietal cortical areas , 1983, Neuroscience.

[12]  I. Ilinsky,et al.  Nigral and cerebellar synaptic terminals in the intermediate and deep layers of the cat superior colliculus revealed by lesioning studies , 1983, Neuroscience.

[13]  P. Brodal,et al.  The corticopontocerebellar pathway to crus I in the cat as studied with anterograde and retrograde transport of horseradish peroxidase , 1983, Brain Research.

[14]  E. Murray,et al.  Organization of tectospinal neurons in the cat and rat superior colliculus , 1982, Brain Research.

[15]  R. Rhoades,et al.  Indirect visual cortical input to the deep layers of the hamster's superior colliculus via the basal ganglia , 1982, The Journal of comparative neurology.

[16]  A. Imperato,et al.  A re-evaluation of the role of superior colliculus in turning behaviour , 1982, Brain Research.

[17]  G. Collingridge,et al.  Evidence for the participation of nigrotectal γ-aminobutyrate-containing neurones in striatal and nigral-derived circling in the rat , 1982, Neuroscience.

[18]  M. Norita Neurons and synaptic patterns in the deep layers of the superior colliculus of the cat. A Golgi and electron microscopic study , 1980, The Journal of comparative neurology.

[19]  N. Mizuno,et al.  Application of coupled oxidation reaction to electron microscopic demonstration of horseradish peroxidase: cobalt-glucose oxidase method , 1979, Brain Research.

[20]  B. Stein,et al.  Sources of subcortical projections to the superior colliculus in the cat , 1979, The Journal of comparative neurology.

[21]  J. T. Weber,et al.  The precise origin of the tectospinal pathway in three common laboratory animals: A study using the horse-radish peroxidase method , 1979, Neuroscience Letters.

[22]  S. Vincent,et al.  The nigrotectal projection: a biochemical and ultrastructural characterization , 1978, Brain Research.

[23]  Ann M. Graybiel,et al.  Organization of the nigrotectal connection: an experimental tracer study in the cat , 1978, Brain Research.

[24]  M. Mesulam,et al.  Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. , 1978, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[25]  P. Streit,et al.  A new and sensitive staining method for axonally transported horseradish peroxidase (HRP) in the pigeon visual system , 1977, Brain Research.

[26]  M. E. Anderson,et al.  Influence of superior colliculus on cat neck motoneurons. , 1971, Journal of neurophysiology.

[27]  W. Nauta,et al.  Afferent and efferent relationships of the basal ganglia. , 1984, Ciba Foundation symposium.

[28]  J. K. Harting,et al.  The Mammalian Superior Colliculus: Studies of Its Morphology and Connections , 1984 .

[29]  Huerta Mf,et al.  Tectal control of spinal cord activity: neuroanatomical demonstration of pathways connecting the superior colliculus with the cervical spinal cord grey. , 1982 .

[30]  J. E. Albano,et al.  Visual-motor function of the primate superior colliculus. , 1980, Annual review of neuroscience.