Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators

The mid-infrared spectral range (λ~2–20 μm) is of particular importance as many molecules exhibit strong vibrational fingerprints in this region. Optical frequency combs—broadband optical sources consisting of equally spaced and mutually coherent sharp lines—are creating new opportunities for advanced spectroscopy. Here we demonstrate a novel approach to create mid-infrared optical frequency combs via four-wave mixing in a continuous-wave pumped ultra-high Q crystalline microresonator made of magnesium fluoride. Careful choice of the resonator material and design made it possible to generate a broadband, low-phase noise Kerr comb at λ=2.5 μm spanning 200 nm (≈10 THz) with a line spacing of 100 GHz. With its distinguishing features of compactness, efficient conversion, large mode spacing and high power per comb line, this novel frequency comb source holds promise for new approaches to molecular spectroscopy and is suitable to be extended further into the mid-infrared.

[1]  Thomas Udem,et al.  Cavity-enhanced dual-comb spectroscopy , 2009, 0908.1928.

[2]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[3]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[4]  Dirk C. Keene Acknowledgements , 1975 .

[5]  Payne,et al.  Nonlinear refractive index of optical crystals. , 1989, Physical review. B, Condensed matter.

[6]  Lute Maleki,et al.  Optical resonators with ten million finesse. , 2007, Optics express.

[7]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[8]  Vladimir S. Ilchenko,et al.  Kilohertz optical resonances in dielectric crystal cavities , 2004 .

[9]  Markus Brehm,et al.  Frequency-comb infrared spectrometer for rapid, remote chemical sensing. , 2005, Optics express.

[10]  Michal Lipson,et al.  Octave-spanning frequency comb generation in a silicon nitride chip. , 2011, Optics letters.

[11]  Bobo Gu,et al.  Optimal coupling to high-Q whispering gallery modes with a sub-wavelength metallic grating coupler , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[12]  Federico Capasso,et al.  Mode-locked pulses from mid-infrared quantum cascade lasers. , 2009, Optics express.

[13]  M. Gorodetsky,et al.  Octave spanning tunable frequency comb from a microresonator. , 2011, Physical review letters.

[14]  B. Bernhardt,et al.  Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers , 2010 .

[15]  S. Corzine,et al.  Coherent instabilities in a semiconductor laser with fast gain recovery , 2007 .

[16]  Konstantin L. Vodopyanov,et al.  Broadband degenerate OPO for mid-infrared frequency comb generation. , 2011, Optics express.

[17]  K. Vahala,et al.  Dynamical thermal behavior and thermal self-stability of microcavities , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[18]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .

[19]  M. Gorodetsky,et al.  Universal formation dynamics and noise of Kerr-frequency combs in microresonators , 2012, Nature Photonics.

[20]  Julien Mandon,et al.  Fourier transform spectroscopy with a laser frequency comb , 2009 .

[21]  Tsunenobu Kimoto,et al.  The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C , 2008 .

[22]  Jun Ye,et al.  References and Notes Supporting Online Material Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection , 2022 .

[23]  M. Oxborrow Traceable 2-D Finite-Element Simulation of the Whispering-Gallery Modes of Axisymmetric Electromagnetic Resonators , 2006, IEEE Transactions on Microwave Theory and Techniques.

[24]  Michal Lipson,et al.  Silicon-based monolithic optical frequency comb source. , 2011, Optics express.

[25]  Vladimir S. Ilchenko,et al.  Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes , 1999 .

[26]  Laurent Chusseau,et al.  Accurate refractive index measurements of doped and undoped InP by a grating coupling technique , 1995 .

[27]  Kazuhiro Ikeda,et al.  Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides. , 2008, Optics express.

[28]  R. Holzwarth,et al.  Femtosecond optical frequency combs , 2009 .

[29]  Jun Ye,et al.  Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. , 2010, Optics express.

[30]  A. Matsko,et al.  Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion , 2005 .

[31]  Lute Maleki,et al.  Tunable optical frequency comb with a crystalline whispering gallery mode resonator. , 2008, Physical review letters.

[32]  Jun Ye,et al.  Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm. , 2009, Optics letters.

[33]  Scott A. Diddams,et al.  Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb , 2011, 1106.2487.

[34]  Arkady Major,et al.  Dispersion of the nonlinear refractive index in sapphire. , 2004, Optics letters.

[35]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[36]  Lan Yang,et al.  Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators. , 2009, Optics express.

[37]  A. Weiner,et al.  Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[38]  P. Maddaloni,et al.  Mid-infrared fibre-based optical comb , 2006 .

[39]  Scott A. Diddams,et al.  Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb , 2007, Nature.

[40]  B. Eggleton,et al.  Enhanced Kerr Nonlinearity in Sub-wavelength Diameter As2Se3 Chalcogenide Fibre Tapers , 2007, COIN-ACOFT 2007 - Joint International Conference on the Optical Internet and the 32nd Australian Conference on Optical Fibre Technology.

[41]  N. Yu,et al.  Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators , 2010 .

[42]  B. Eggleton,et al.  Enhanced Kerr Nonlinearity in Sub-wavelength Diameter As 2 Se 3 Chalcogenide Fibre Tapers , 2007 .

[43]  A. Matsko,et al.  Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator. , 2011, Optics letters.

[44]  M. Gorodetsky,et al.  Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion , 2009, 0907.0143.

[45]  W A Reed,et al.  Measurement of the nonlinear index of silica-core and dispersion-shifted fibers. , 1994, Optics letters.

[46]  T. Kippenberg,et al.  Full stabilization of a microresonator-based optical frequency comb. , 2008, Physical review letters.

[47]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[48]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[49]  I. Coddington,et al.  Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. , 2007, Physical review letters.

[50]  T. J. Kippenberg,et al.  Cavity optomechanics with ultrahigh-Q crystalline microresonators , 2009, 0911.1178.

[51]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[52]  Mansoor Sheik-Bahae,et al.  Dispersion of bound electron nonlinear refraction in solids , 1991 .

[53]  Sanja Zlatanovic,et al.  Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source , 2010 .