Exact recovery of non-uniform splines from the projection onto spaces of algebraic polynomials
暂无分享,去创建一个
[1] G. Plonka,et al. How many Fourier samples are needed for real function reconstruction? , 2013 .
[2] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[3] Holger Rauhut,et al. Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.
[4] R. DeVore,et al. Compressed sensing and best k-term approximation , 2008 .
[5] Emmanuel J. Candès,et al. Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.
[6] Emmanuel J. Cand. Towards a Mathematical Theory of Super-Resolution , 2012 .
[7] Yohann de Castro,et al. Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.
[8] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[9] Shai Dekel,et al. Exact Recovery of Dirac Ensembles from the Projection Onto Spaces of Spherical Harmonics , 2014, ArXiv.
[10] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[11] Emmanuel J. Candès,et al. Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.
[12] W. Rudin. Real and complex analysis, 3rd ed. , 1987 .
[13] ShenJie. Efficient spectral-Galerkin method I , 1994 .
[14] Jie Shen,et al. Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..
[15] R. Cooke. Real and Complex Analysis , 2011 .
[16] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[17] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[18] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[19] Thierry Blu,et al. Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..