Evaluation of the antiedematogenic and anti-inflammatory properties of Ximenia americana L. (Olacaceae) bark extract in experimental models of inflammation.

[1]  I. D. de Menezes,et al.  Mixtures of medicinal plants from caatinga: Basis for further bioprospecting studies , 2022, South African Journal of Botany.

[2]  H. Coutinho,et al.  Acaricide activity of the Ximenia americana L. (Olacaceae) stem bark hydroethanolic extract against Rhipicephalus (Boophilus) microplus , 2021, Biologia.

[3]  W. Ko,et al.  Suppressive effects of rutin, quercitrin, and isoquercitrin on atypical allergic asthma in an animal model , 2021 .

[4]  J. Espín,et al.  Targeting Mammalian 5-Lipoxygenase by Dietary Phenolics as an Anti-Inflammatory Mechanism: A Systematic Review , 2021, International journal of molecular sciences.

[5]  Y. Kurashima,et al.  Two Sides of the Coin: Mast Cells as a Key Regulator of Allergy and Acute/Chronic Inflammation , 2021, Cells.

[6]  K. Pereira,et al.  Anti-inflammatory and Hepatoprotective Effects of Quercetin in an Experimental Model of Rheumatoid Arthritis , 2021, Inflammation.

[7]  Bizuayehu Desta,et al.  Ximenia americana: Economic Importance, Medicinal Value, and Current Status in Ethiopia , 2021, TheScientificWorldJournal.

[8]  D. Zielińska,et al.  Caffeic Acid Modulates Processes Associated with Intestinal Inflammation , 2021, Nutrients.

[9]  R. Bauer,et al.  Natural products in drug discovery: advances and opportunities , 2021, Nature Reviews Drug Discovery.

[10]  Y. Zhang,et al.  Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. , 2020, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[11]  P. Diao,et al.  Quercetin and Quercitrin Attenuates the Inflammatory Response and Oxidative Stress in LPS-Induced RAW264.7 Cells: In Vitro Assessment and a Theoretical Model , 2019, BioMed research international.

[12]  A. Shimamoto,et al.  Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. , 2019, International immunology.

[13]  I. D. de Menezes,et al.  Ximenia americana L. enhances the antibiotic activity and inhibit the development of kinetoplastid parasites. , 2019, Comparative immunology, microbiology and infectious diseases.

[14]  Y. Muhammad,et al.  Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. , 2019, Bioorganic chemistry.

[15]  N. Ricardo,et al.  Ximenia americana heteropolysaccharides ameliorate inflammation and visceral hypernociception in murine caerulein-induced acute pancreatitis: Involvement of CB2 receptors. , 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[16]  Y. Taufiq-Yap,et al.  The crucial roles of inflammatory mediators in inflammation: A review , 2018, Veterinary world.

[17]  H. Coutinho,et al.  HPLC profile and antiedematogenic activity of Ximenia americana L. (Olacaceae) in mice models of skin inflammation. , 2018, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[18]  M. S. Alexandre-Moreira,et al.  Antinociceptive and anti-inflammatory activities of the ethanolic extract, of fractions and of epicatechin isolated from the stem bark of Ximenia americana L. (Oleacaceae) , 2018 .

[19]  S. McMahon,et al.  Immune Cytokines and Their Receptors in Inflammatory Pain. , 2018, Trends in immunology.

[20]  J. Almeida,et al.  Contribution of Secondary Metabolites to the Gastroprotective Effect of Aqueous Extract of Ximenia americana L. (Olacaceae) Stem Bark in Rats , 2018, Molecules.

[21]  A. Giusti-Paiva,et al.  Prostaglandins mediate zymosan-induced sickness behavior in mice , 2017, The Journal of Physiological Sciences.

[22]  Shao-Cong Sun,et al.  NF-κB signaling in inflammation , 2017, Signal Transduction and Targeted Therapy.

[23]  M. K. Sateesh,et al.  In vitro antidiabetic activities and GC-MS phytochemical analysis of Ximenia americana extracts , 2017 .

[24]  M. G. Queiroz,et al.  Polysaccharide rich fractions from barks of Ximenia americana inhibit peripheral inflammatory nociception in mice Antinociceptive effect of Ximenia americana polysaccharide rich fractions , 2017 .

[25]  R. Florêncio-Silva,et al.  Mast cell concentration and skin wound contraction in rats treated with Ximenia americana L. , 2017, Acta cirurgica brasileira.

[26]  A. Azab,et al.  Anti-Inflammatory Activity of Natural Products , 2016, Molecules.

[27]  Haroon Khan,et al.  Medicinal plants with anti-inflammatory activities , 2016, Natural product research.

[28]  S. Alonso,et al.  Pharmacological inhibition of eicosanoids and platelet-activating factor signaling impairs zymosan-induced release of IL-23 by dendritic cells. , 2016, Biochemical pharmacology.

[29]  R. Alves,et al.  Bioactive compounds and antioxidant potential fruit of Ximenia americana L. , 2016, Food chemistry.

[30]  B. Kaliwal,et al.  Evaluation of in vitro antioxidant and anti-inflammatory activities of Ximenia americana extracts , 2015 .

[31]  H. Coutinho,et al.  Ethnopharmacological study of plants sold for therapeutic purposes in public markets in Northeast Brazil. , 2015, Journal of ethnopharmacology.

[32]  L. Djouhri,et al.  Persistent hindlimb inflammation induces changes in activation properties of hyperpolarization-activated current (I h) in rat C-fiber nociceptors in vivo , 2015, Neuroscience.

[33]  Soken Tsuchiya,et al.  Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. , 2015, Biochimica et biophysica acta.

[34]  E. Fernandes,et al.  Flavonoids Inhibit COX-1 and COX-2 Enzymes and Cytokine/Chemokine Production in Human Whole Blood , 2015, Inflammation.

[35]  Jianping Ye,et al.  Regulation of energy balance by inflammation: Common theme in physiology and pathology , 2015, Reviews in Endocrine and Metabolic Disorders.

[36]  Germano Véras,et al.  Validation of UPLC method for determination of gallic acid from Ximenia americana L. , 2014 .

[37]  Guangji Wang,et al.  Flavonoid Apigenin Inhibits Lipopolysaccharide-Induced Inflammatory Response through Multiple Mechanisms in Macrophages , 2014, PloS one.

[38]  Won‐Kyo Jung,et al.  Caffeic acid phenethyl ester promotes anti-inflammatory effects by inhibiting MAPK and NF-κB signaling in activated HMC-1 human mast cells , 2014, Pharmaceutical biology.

[39]  H. Chung,et al.  Caffeic acid regulates LPS-induced NF-κB activation through NIK/IKK and c-Src/ERK signaling pathways in endothelial cells , 2013, Archives of Pharmacal Research.

[40]  Juan Zhou,et al.  Caffeic acid reduces cutaneous tumor necrosis factor alpha (TNF-α), IL-6 and IL-1β levels and ameliorates skin edema in acute and chronic model of cutaneous inflammation in mice. , 2014, Biological & pharmaceutical bulletin.

[41]  A. Dantas,et al.  AVALIAÇÃO DO EXTRATO HIDROALCOÓLICO DE Ximenia americana NO PROCESSO CICATRICIAL DE FERIDAS CUTÂNEAS EXPERIMENTAIS EM CAPRINOS , 2013 .

[42]  J. Cho,et al.  IRAK1/4-Targeted Anti-Inflammatory Action of Caffeic Acid , 2013, Mediators of inflammation.

[43]  D. Longrois,et al.  The role of prostaglandin E2 in human vascular inflammation. , 2013, Prostaglandins, leukotrienes, and essential fatty acids.

[44]  M. Minaiyan,et al.  Further studies on anti-inflammatory activity of maprotiline in carrageenan-induced paw edema in rat. , 2013, International immunopharmacology.

[45]  R. Nelson,et al.  Inflammation: Mechanisms, Costs, and Natural Variation , 2012 .

[46]  T. G. Lemos,et al.  Ximenia americana: Chemistry, Pharmacology and Biological Properties, a Review , 2012 .

[47]  M. Vasko,et al.  Models of Inflammation: Carrageenan‐ or Complete Freund's Adjuvant (CFA)–Induced Edema and Hypersensitivity in the Rat , 2012, Current protocols in pharmacology.

[48]  C. Akdis,et al.  Regulation of the immune response and inflammation by histamine and histamine receptors. , 2011, The Journal of allergy and clinical immunology.

[49]  T. Kooistra,et al.  Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. , 2011, Atherosclerosis.

[50]  Ouedraogo Moustapha,et al.  Acute toxicity and anti-inflammatory activity of aqueous ethanol extract of root bark of Ximenia americana L. (Olacaceae) , 2011 .

[51]  .. K.Hemamalini,et al.  Phytochemical screening and analgesic activity of methanolic extract of Ximenia americana , 2011 .

[52]  J. Haeggström,et al.  Advances in eicosanoid research, novel therapeutic implications. , 2010, Biochemical and biophysical research communications.

[53]  D. Bates Vascular endothelial growth factors and vascular permeability , 2010, Cardiovascular research.

[54]  Xianglin Shi,et al.  Inhibition of AP-1 and MAPK signaling and activation of Nrf2/ARE pathway by quercitrin. , 2009, International journal of oncology.

[55]  B. Maikai,et al.  Antimicrobial Properties of Stem Bark Extracts of Ximenia Americana , 2009 .

[56]  K. Kohli,et al.  Mechanism of action of flavonoids as anti-inflammatory agents: a review. , 2009, Inflammation & allergy drug targets.

[57]  S. Drexler,et al.  Cell signalling in macrophages, the principal innate immune effector cells of rheumatoid arthritis , 2008, Arthritis research & therapy.

[58]  Ohad Parnes,et al.  Inflammation , 2008, The Lancet.

[59]  L. Costa-Lotufo,et al.  Chemical Constituents of Ximenia Americana , 2008 .

[60]  Peter Libby,et al.  Inflammatory mechanisms: the molecular basis of inflammation and disease. , 2007, Nutrition reviews.

[61]  Byung Hak Kim,et al.  Effect of quercitrin gallate on zymosan A-lnduced peroxynitrite production in macrophages , 2007, Archives of pharmacal research.

[62]  .. A.U.Wurochekke,et al.  Phytochemical and Antimicrobial Investigation of the Aqueous and Methanolic Extracts of Ximenia americana , 2007 .

[63]  M. Berger,et al.  Identification of potent anticancer activity in Ximenia americana aqueous extracts used by African traditional medicine. , 2006, Toxicology and applied pharmacology.

[64]  S. Ibitoye,et al.  Short Communication: Studies of antimicrobial activity and chemical constituents of Ximenia americana , 2005 .

[65]  O. Shaw,et al.  Possible anti-inflammatory role of COX-2-derived prostaglandins: implications for inflammation research. , 2005, Current opinion in investigational drugs.

[66]  M. Comalada,et al.  In vivo quercitrin anti‐inflammatory effect involves release of quercetin, which inhibits inflammation through down‐regulation of the NF‐κB pathway , 2005, European journal of immunology.

[67]  F. Cunha,et al.  A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Ha,et al.  Anti-inflammatory effect of caffeic acid methyl ester and its mode of action through the inhibition of prostaglandin E2, nitric oxide and tumor necrosis factor-α production , 2004 .

[69]  M. Comalada,et al.  The intestinal anti‐inflammatory effect of quercitrin is associated with an inhibition in iNOS expression , 2004, British journal of pharmacology.

[70]  H. Thorlacius,et al.  Neutrophil recruitment in mast cell-dependent inflammation: inhibitory mechanisms of glucocorticoids , 2004, Inflammation Research.

[71]  J. Calixto,et al.  Caffeic Acid Derivatives: In Vitro and In Vivo Anti-inflammatory Properties , 2004, Free radical research.

[72]  L. Pelzer,et al.  Comparative study of flavonoids in experimental models of inflammation. , 2003, Pharmacological research.

[73]  E. Elnima,et al.  Antimicrobial activity of Ximenia americana. , 2003, Fitoterapia.

[74]  T. Lawrence,et al.  Anti-inflammatory lipid mediators and insights into the resolution of inflammation , 2002, Nature Reviews Immunology.

[75]  Hui-Yi Lin,et al.  In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E2 production , 2002 .

[76]  Y. Song,et al.  Caffeic acid phenethyl ester inhibits nitric oxide synthase gene expression and enzyme activity. , 2002, Cancer letters.

[77]  A. Billiau,et al.  Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases , 2001, Journal of leukocyte biology.

[78]  J. Calixto,et al.  Evidence for the participation of kinins in Freund's adjuvant-induced inflammatory and nociceptive responses in kinin B1 and B2 receptor knockout mice , 2001, Neuropharmacology.

[79]  C. Funk,et al.  Prostaglandins and leukotrienes: advances in eicosanoid biology. , 2001, Science.

[80]  L. Pelzer,et al.  Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. , 2001, Farmaco.

[81]  Y. Yoshikai Roles of prostaglandins and leukotrienes in acute inflammation caused by bacterial infection , 2001, Current opinion in infectious diseases.

[82]  J. Manthey Biological Properties of Flavonoids Pertaining to Inflammation , 2000, Microcirculation.

[83]  P. Maffia,et al.  Nitric oxide inhibits leucocyte migration in carrageenin-induced rat pleurisy , 2000, Inflammation Research.

[84]  Y. Takeda,et al.  C(18) acetylenic fatty acids of Ximenia americana with potential pesticidal activity. , 2000, Journal of agricultural and food chemistry.

[85]  H. Gould Complete Freund's adjuvant-induced hyperalgesia: a human perception , 2000, Pain.

[86]  F. D’Acquisto,et al.  Activation of nuclear transcription factor kappaB in rat carrageenin-induced pleurisy. , 1999, European journal of pharmacology.

[87]  I. Utsunomiya,et al.  Generation of inflammatory cytokines in zymosan-induced pleurisy in rats: TNF induces IL-6 and cytokine-induced neutrophil chemoattractant (CINC) in vivo. , 1998, Cytokine.

[88]  S. Cuzzocrea,et al.  Zymosan-activated plasma induces paw oedema by nitric oxide and prostaglandin production. , 1996, Life sciences.

[89]  Steven F. Maier,et al.  Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states , 1995, Pain.

[90]  I. Utsunomiya,et al.  Differential effects of indomethacin and dexamethasone on cytokine production in carrageenin-induced rat pleurisy. , 1994, European journal of pharmacology.

[91]  A. Nussler,et al.  Inflammation, immunoregulation, and inducible nitric oxide synthase , 1993, Journal of leukocyte biology.

[92]  T. Mikami,et al.  Effects of several anti-inflammatory drugs on the various parameters involved in the inflammatory response in rat carrageenin-induced pleurisy. , 1983, European journal of pharmacology.

[93]  R. Camp,et al.  Prostaglandins, hydroxy fatty acids, leukotrienes and inflammation of the skin , 1982, Clinical and experimental dermatology.

[94]  H. Maling,et al.  Inflammation induced by histamine, serotonin, bradykinin and compound 48-80 in the rat: antagonists and mechanisms of action. , 1974, The Journal of pharmacology and experimental therapeutics.

[95]  C A WINTER,et al.  Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Antiinflammatory Drugs , 1962, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[96]  N. Jancsó INFLAMMATION AND THE INFLAMMATORY MECHANISMS * , 1961, The Journal of pharmacy and pharmacology.

[97]  J. Kimondo,et al.  Anti-inflammatory activity of selected plants used by the Ilkisonko Maasai, Kenya , 2020 .

[98]  Xin Wu,et al.  Quercetin attenuates collagen‐induced arthritis by restoration of Th17/Treg balance and activation of Heme Oxygenase 1‐mediated anti‐inflammatory effect , 2018, International immunopharmacology.

[99]  Role of Histamine in Acute Inflammation , 2015 .

[100]  C. Chetty,et al.  SCREENING OF XIMENIA AMERICANA L.FOR ITS ANTI-IFLAMMATORY ACTIVITY , 2012 .

[101]  T. Y. Soro,et al.  Study of analgesic activity, antipyretic and anti-inflammatory effect of aqueous extract of Ximenia american (linne) (olacaceae). , 2010 .

[102]  S. S. Costa,et al.  Flavonoids: Potential therapeutic agents for the inflammatory process , 2009 .

[103]  D. Greaves,et al.  Chapter 17. Zymosan-induced peritonitis as a simple experimental system for the study of inflammation. , 2009, Methods in enzymology.

[104]  D. James,et al.  Assessment of the hepatic effects, heamatological effect and some phytochemical constituents of Ximenia americana (Leaves, stem and root) extracts , 2008 .

[105]  Hyun Pyo Kim,et al.  Anti-inflammatory plant flavonoids and cellular action mechanisms. , 2004, Journal of pharmacological sciences.

[106]  W. Muller Leukocyte-Endothelial Cell Interactions in the Inflammatory Response , 2002, Laboratory investigation; a journal of technical methods and pathology.

[107]  T. Wright,et al.  Cytokines in acute and chronic inflammation. , 1997, Frontiers in bioscience : a journal and virtual library.

[108]  K. Taguchi,et al.  [Pharmacological studies of Houttuyniae herba: the anti-inflammatory effect of quercitrin]. , 1993, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.

[109]  E. Becker Chemotactic factors of inflammation , 1983 .

[110]  R. Christensen,et al.  Cellular and extracellular myeloperoxidase in pyogenic inflammation. , 1982, Blood.