TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH
暂无分享,去创建一个
[1] Charles S. Peskin,et al. A Lagrangian fractional step method for the incompressible Navier-Stokes equations on a periodic domain , 1987 .
[2] J. Font,et al. A new general relativistic magnetohydrodynamics code for dynamical spacetimes , 2008, 0804.4572.
[3] O. Zanotti,et al. ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.
[4] C. Munz,et al. Hyperbolic divergence cleaning for the MHD equations , 2002 .
[5] R. Blandford,et al. Fluid dynamics of relativistic blast waves , 1976 .
[6] M. Brio,et al. An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .
[7] J. Hawley,et al. A Numerical Method for General Relativistic Magnetohydrodynamics , 2002, astro-ph/0210518.
[8] Garching,et al. Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.
[9] Ko Nakamura,et al. Self-similar Solutions for the Interaction of Relativistic Ejecta with an Ambient Medium , 2006, astro-ph/0603120.
[10] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[11] M. Putten. A numerical implementation of MHD in divergence form , 1993 .
[12] G. Bodo,et al. An HLLC Riemann solver for relativistic flows ¿ I. Hydrodynamics , 2005, astro-ph/0506414.
[13] C. Gammie,et al. Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics , 2005, astro-ph/0512420.
[14] P. Londrillo,et al. An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .
[15] Philip A. Hughes,et al. Simulations of Relativistic Extragalactic Jets , 1994 .
[16] Charles F. Gammie,et al. HARM: A NUMERICAL SCHEME FOR GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS , 2003 .
[17] Z. Etienne,et al. Relativistic magnetohydrodynamics in dynamical spacetimes: A new adaptive mesh refinement implementation , 2010, 1007.2848.
[18] David Neilsen,et al. Relativistic MHD with adaptive mesh refinement , 2006, gr-qc/0605102.
[19] Bernard F. Schutz,et al. Living Reviews in Relativity: Making an Electronic Journal Live , 1997 .
[20] L. Hernquist,et al. TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .
[21] Rony Keppens,et al. A multidimensional grid-adaptive relativistic magnetofluid code , 2008, Comput. Phys. Commun..
[22] Numerical Hydrodynamics in General Relativity , 2000, Living reviews in relativity.
[23] S. Nagataki. DEVELOPMENT OF A GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC CODE AND ITS APPLICATION TO THE CENTRAL ENGINE OF LONG GAMMA-RAY BURSTS , 2009, 0902.1908.
[24] Stephan Rosswog,et al. Conservative, special-relativistic smoothed particle hydrodynamics , 2009, J. Comput. Phys..
[25] Volker Springel,et al. SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS , 2011, 1101.5491.
[26] R. Whitehurst,et al. A free Lagrange method for gas dynamics , 1995 .
[27] A. Ferrari,et al. PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.
[28] E. Tadmor,et al. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .
[29] Weiqun Zhang,et al. RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code , 2005, astro-ph/0505481.
[30] P. Woodward,et al. The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .
[31] Jonathan C. McKinney,et al. WHAM : a WENO-based general relativistic numerical scheme -I. Hydrodynamics , 2007, 0704.2608.
[32] R. Keppens,et al. AMRVAC and relativistic hydrodynamic simulations for gamma-ray burst afterglow phases , 2007, astro-ph/0701434.
[33] R. Rosner,et al. Kelvin-Helmholtz instability for relativistic fluids. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[34] V. Springel. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.
[35] Santa Barbara,et al. Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement , 2005, astro-ph/0509254.
[36] A. Levinson. Relativistic Rayleigh–Taylor instability of a decelerating shell and its implications for gamma-ray bursts , 2009, 0909.1636.