TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH

We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluids on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.

[1]  Charles S. Peskin,et al.  A Lagrangian fractional step method for the incompressible Navier-Stokes equations on a periodic domain , 1987 .

[2]  J. Font,et al.  A new general relativistic magnetohydrodynamics code for dynamical spacetimes , 2008, 0804.4572.

[3]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[4]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[5]  R. Blandford,et al.  Fluid dynamics of relativistic blast waves , 1976 .

[6]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[7]  J. Hawley,et al.  A Numerical Method for General Relativistic Magnetohydrodynamics , 2002, astro-ph/0210518.

[8]  Garching,et al.  Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.

[9]  Ko Nakamura,et al.  Self-similar Solutions for the Interaction of Relativistic Ejecta with an Ambient Medium , 2006, astro-ph/0603120.

[10]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[11]  M. Putten A numerical implementation of MHD in divergence form , 1993 .

[12]  G. Bodo,et al.  An HLLC Riemann solver for relativistic flows ¿ I. Hydrodynamics , 2005, astro-ph/0506414.

[13]  C. Gammie,et al.  Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics , 2005, astro-ph/0512420.

[14]  P. Londrillo,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .

[15]  Philip A. Hughes,et al.  Simulations of Relativistic Extragalactic Jets , 1994 .

[16]  Charles F. Gammie,et al.  HARM: A NUMERICAL SCHEME FOR GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS , 2003 .

[17]  Z. Etienne,et al.  Relativistic magnetohydrodynamics in dynamical spacetimes: A new adaptive mesh refinement implementation , 2010, 1007.2848.

[18]  David Neilsen,et al.  Relativistic MHD with adaptive mesh refinement , 2006, gr-qc/0605102.

[19]  Bernard F. Schutz,et al.  Living Reviews in Relativity: Making an Electronic Journal Live , 1997 .

[20]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[21]  Rony Keppens,et al.  A multidimensional grid-adaptive relativistic magnetofluid code , 2008, Comput. Phys. Commun..

[22]  Numerical Hydrodynamics in General Relativity , 2000, Living reviews in relativity.

[23]  S. Nagataki DEVELOPMENT OF A GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC CODE AND ITS APPLICATION TO THE CENTRAL ENGINE OF LONG GAMMA-RAY BURSTS , 2009, 0902.1908.

[24]  Stephan Rosswog,et al.  Conservative, special-relativistic smoothed particle hydrodynamics , 2009, J. Comput. Phys..

[25]  Volker Springel,et al.  SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS , 2011, 1101.5491.

[26]  R. Whitehurst,et al.  A free Lagrange method for gas dynamics , 1995 .

[27]  A. Ferrari,et al.  PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.

[28]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[29]  Weiqun Zhang,et al.  RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code , 2005, astro-ph/0505481.

[30]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[31]  Jonathan C. McKinney,et al.  WHAM : a WENO-based general relativistic numerical scheme -I. Hydrodynamics , 2007, 0704.2608.

[32]  R. Keppens,et al.  AMRVAC and relativistic hydrodynamic simulations for gamma-ray burst afterglow phases , 2007, astro-ph/0701434.

[33]  R. Rosner,et al.  Kelvin-Helmholtz instability for relativistic fluids. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[35]  Santa Barbara,et al.  Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement , 2005, astro-ph/0509254.

[36]  A. Levinson Relativistic Rayleigh–Taylor instability of a decelerating shell and its implications for gamma-ray bursts , 2009, 0909.1636.