Microscopy and Spectroscopy of Lithium Nickel Oxide-Based Particles Used in High Power Lithium-Ion Cells

Structural and electronic investigations were conducted on lithium nickel oxide-based particles used in positive electrodes of 18650-type high-power Li-ion cells. K-edge X-ray absorption spectroscopy (XAS) revealed trivalent Ni and Co ions in the bulk LiNi{sub 0.8}Co{sub 0.2}O{sub 2} powder used to prepare the high power electrode laminates. Using oxygen K-edge XAS, high resolution electron microscopy, nanoprobe diffraction, and electron energy-loss spectroscopy, we identified a <5 nm thick modified layer on the surface of the oxide particles, which results from the loss of Ni and Li ordering in the layered R{bar 3}m structure. This structural change was accompanied by oxygen loss and a lowering of the Ni- and Co-oxidation states in the surface layer. Growth of this surface layer may contribute to the impedance rise observed during accelerated aging of these Li-ion cells.

[1]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[2]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[3]  J. Goodenough,et al.  Some Ferrimagnetic Properties of the System LixNi1-xO , 1958 .

[4]  Kuiper,et al.  Character of holes in LixNi1-xO and their magnetic behavior. , 1989, Physical review letters.

[5]  J. Goodenough,et al.  Some magnetic and crystallographic properties of the system Li+xNi++1−2xni+++xO , 1958 .

[6]  A. Hightower,et al.  Electronic structure of chemically-delithiated LiCoO2 studied by electron energy-loss spectrometry , 2002 .

[7]  Min Gyu Kim,et al.  Oxygen Contribution on Li-Ion Intercalation-Deintercalation in LiAl y Co1 − y O 2 Investigated by O K-Edge and Co L-Edge X-Ray Absorption Spectroscopy , 2002 .

[8]  Jeff Dahn,et al.  Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure , 1990 .

[9]  N. M. Tallan Electrical conductivity in ceramics and glass , 1974 .

[10]  Khalil Amine,et al.  Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries , 2001 .

[11]  Herbert L Case,et al.  An accelerated calendar and cycle life study of Li-ion cells. , 2001 .

[12]  Richard T. Haasch,et al.  Surface Characterization of Electrodes from High Power Lithium-Ion Batteries , 2002 .

[13]  B. Fultz,et al.  An Electron Energy-Loss Spectrometry Study of Charge Compensation in LiNi_(0.8)Co_(0.2)O_2 , 2003 .

[14]  John F. Watts,et al.  Encyclopedia of materials characterization: C. Richard Brundle, Charles A. Evans Jr and Shaun Wilson (Eds) Butterworth-Heinemann, Stoneham, USA, 1992, ISBN 0-7506-9168-9, 750pp. £75 , 1993 .

[15]  T. Yao,et al.  Changes in electronic structure by Li ion deintercalation in LiNiO2 from nickel L-edge and O K-edge XANES , 2001 .

[16]  James McBreen,et al.  In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries , 2001 .

[17]  A. Jacobson,et al.  Nickel K-edge x-ray absorption fine structure of lithium nickel oxides , 1993 .

[18]  D. Turnbull,et al.  Solid State Physics : Advances in Research and Applications , 1978 .

[19]  I. Nakai,et al.  In Situ Transmission X‐Ray Absorption Fine Structure Analysis of the Li Deintercalation Process in Li ( Ni0.5Co0.5 ) O 2 , 1999 .

[20]  M. Nelhiebel,et al.  Theory of orientation-sensitive near-edge fine-structure core-level spectroscopy , 1999 .

[21]  Min Gyu Kim,et al.  Oxygen contribution on Li-ion intercalation-deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy , 2002 .

[22]  M. Balasubramanian,et al.  In Situ X‐Ray Absorption Studies of a High‐Rate LiNi0.85Co0.15 O 2 Cathode Material , 2000 .

[23]  D. M. Smyth Electrical Conductivity in Ceramics: A Review , 1987 .

[24]  Kuiper,et al.  Electronic structure of Li-doped NiO. , 1992, Physical review. B, Condensed matter.

[25]  Christopher S. Johnson,et al.  In situ XAFS analysis of the LixNi0.8Co0.2O2 cathode during cycling in lithium batteries , 2002 .

[26]  James McBreen,et al.  FORMATION OF SEI ON CYCLED LITHIUM-ION BATTERY CATHODES: SOFT X-RAY ABSORPTION STUDY , 2002 .

[27]  J. W. Edington,et al.  Practical electron microscopy in materials science , 1976 .

[28]  Tsuda,et al.  Soft-x-ray-absorption studies of the location of extra charges induced by substitution in controlled-valence materials. , 1991, Physical review. B, Condensed matter.

[29]  Elaine Evelyn Hunter,et al.  Practical Electron Microscopy: A Beginner's Illustrated Guide , 1984 .

[30]  C. Delmas,et al.  Non-cooperative Jahn-Teller effect in LiNiO2: An EXAFS study , 1995 .

[31]  L. A. Montoro,et al.  Electronic Structure of Transition Metal Ions in Deintercalated and Reintercalated LiCo0.5Ni0.5 O 2 , 2000 .

[32]  Robert Kostecki,et al.  Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles , 2001 .