Tocotrienamines and tocopheramines: reactions with radicals and metal ions.

[1]  V. Böhm,et al.  In vitro antioxidant activity of tocopherols and tocotrienols and comparison of vitamin E concentration and lipophilic antioxidant capacity in human plasma. , 2010, Molecular nutrition & food research.

[2]  T. Netscher,et al.  Anticancer Activity of Vitamin E‐Derived Compounds in Murine C6 Glioma Cells , 2010, ChemMedChem.

[3]  M. Piroddi,et al.  Analysis method and characterization of the antioxidant capacity of vitamin E-interactive polysulfone hemodialyzers. , 2009, Acta Biomaterialia.

[4]  Jaroslav Turánek,et al.  Liposomal formulation of alpha-tocopheryl maleamide: in vitro and in vivo toxicological profile and anticancer effect against spontaneous breast carcinomas in mice. , 2009, Toxicology and applied pharmacology.

[5]  T. Netscher,et al.  Efficient Synthesis of Vitamin E Amines , 2009 .

[6]  T. Netscher,et al.  Vitamin E chemistry. Nitration of non-alpha-tocopherols: products and mechanistic considerations. , 2007, The Journal of organic chemistry.

[7]  V. Preedy,et al.  The Encyclopedia of Vitamin E , 2007 .

[8]  Y. Kanesaki,et al.  Structure−Activity Relationship of the Free-Radical-Scavenging Reaction by Vitamin E (α-, β-, γ-, δ-Tocopherols) and Ubiquinol-10: pH Dependence of the Reaction Rates , 2007 .

[9]  P. Mecocci,et al.  Vitamin E biotransformation in humans. , 2007, Vitamins and hormones.

[10]  P. Salvadori,et al.  Vitamin E Metabolites: Synthesis of [D2]‐ and [D3]‐γ‐CEHC , 2006 .

[11]  E. Cairns,et al.  Electrochemical and spectroscopic measurements for stable nitroxyl radicals , 2006 .

[12]  S. Itoh,et al.  Kinetic study of quenching reactions of singlet oxygen and scavenging reactions of free radicals by α-, β-, λ- and σ-tocopheramines in ethanol solution and micellar dispersion , 1994, Lipids.

[13]  P. Murphy,et al.  Oxidation of N-methyl-γ-tocopheramine to a nitroxide , 1976, Lipids.

[14]  R. Radi,et al.  Protein tyrosine nitration in hydrophilic and hydrophobic environments , 2006, Amino Acids.

[15]  T. Rosenau,et al.  Antioxidant properties of natural and synthetic chromanol derivatives: study by fast kinetics and electron spin resonance spectroscopy. , 2005, The Journal of organic chemistry.

[16]  Dejian Huang,et al.  The chemistry behind antioxidant capacity assays. , 2005, Journal of agricultural and food chemistry.

[17]  N. Pellegrini,et al.  Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. , 2003, The Journal of nutrition.

[18]  F. Kelly,et al.  Gas chromatography mass spectrometry analysis of carboxyethyl-hydroxychroman metabolites of α- and γ-tocopherol in human plasma , 2002 .

[19]  J J Strain,et al.  The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. , 1996, Analytical biochemistry.

[20]  D. R. Duling,et al.  Simulation of multiple isotropic spin-trap EPR spectra. , 1994, Journal of magnetic resonance. Series B.

[21]  J. G. Bieri,et al.  Vitamin E activity and metabolism of N-methyltocopheramines. , 1967, Biochemistry.

[22]  Ulrich Schwieter,et al.  266. Zur Synthese und Vitamin‐E‐Wirksamkeit von Tocopheraminen und ihren N‐Alkyl‐Derivaten , 1966 .

[23]  J. Würsch,et al.  267. Resorption, Retention, Verteilung und Stoffwechsel des d, l-α-Tocopheramins, d, l-N-Methyl-γ-tocopheramins und des γ-Tocopherols im Vergleich zum d,l-α-Tocopherol bei der Ratte , 1966 .

[24]  L. Smith,et al.  The Chemistry of Vitamin E. XXXVIII.1,2 α-Tocopheramine,3 a New Vitamin E Factor , 1942 .