Querying semantic trajectory episodes

Trajectory acquisition, management, and processing are important tasks for any application that deals with spatiotemporal data. In order to perform these tasks effectively, it is important to rely on flexible structures. Many data models have been proposed for representing spatiotemporal traces. However, modeling trajectory characteristics and context information is still a challenge. In this work, we introduce the STEP ontology (Semantic Trajectory Episodes) for trajectory enrichment. In order to model this domain, we structure trajectories and related contextual data in terms of semantic episodes that allow describing various characteristics of the traces and context along time and space dimensions. We demonstrate the usage of the STEP ontology for enriching raw trajectories and show how the proposed model may be useful for trajectory analysis tasks.

[1]  Antony Galton,et al.  Dynamic Collectives and Their Collective Dynamics , 2005, COSIT.

[2]  Michael F. Goodchild,et al.  Towards a general theory of geographic representation in GIS , 2007, Int. J. Geogr. Inf. Sci..

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Aldo Gangemi,et al.  Ontology Design Patterns for Semantic Web Content , 2005, SEMWEB.

[5]  Kevin Buchin,et al.  A framework for trajectory segmentation by stable criteria , 2014, SIGSPATIAL/GIS.

[6]  Nikos Pelekis,et al.  Baquara: A Holistic Ontological Framework for Movement Analysis Using Linked Data , 2013, ER.

[7]  Maike Buchin,et al.  Segmenting trajectories: A framework and algorithms using spatiotemporal criteria , 2011, J. Spatial Inf. Sci..

[8]  Fabio Vitali,et al.  Modelling OWL Ontologies with Graffoo , 2014, ESWC.

[9]  Stefano Spaccapietra,et al.  Trajectory Ontologies and Queries , 2008 .

[10]  Spiros Athanasiou,et al.  Towards GeoSpatial semantic data management: strengths, weaknesses, and challenges ahead , 2014, SIGSPATIAL/GIS.

[11]  Krzysztof Janowicz,et al.  A Geo-ontology Design Pattern for Semantic Trajectories , 2013, COSIT.

[12]  Herve Martin,et al.  An Ontology-Based Approach to Represent Trajectory Characteristics , 2014, 2014 Fifth International Conference on Computing for Geospatial Research and Application.

[13]  Michael May,et al.  Semantic Annotation of GPS Trajectories , 2008 .

[14]  Reinaldo Bezerra Braga,et al.  LIDU : une approche basée sur la localisation pour l'identification de similarités d'intérêts entre utilisateurs dans les réseaux sociaux. (LIDU : Location-based approach to IDentify similar interests between Users in social networks) , 2012 .

[15]  Patrick Laube,et al.  The low hanging fruit is gone: achievements and challenges of computational movement analysis , 2015, SIGSPACIAL.

[16]  Stefano Spaccapietra,et al.  SeMiTri: a framework for semantic annotation of heterogeneous trajectories , 2011, EDBT/ICDT '11.

[17]  Fabio Porto,et al.  A conceptual view on trajectories , 2008, Data Knowl. Eng..

[18]  Urs Ramer,et al.  An iterative procedure for the polygonal approximation of plane curves , 1972, Comput. Graph. Image Process..

[19]  Joachim Gudmundsson,et al.  Computational Movement Analysis , 2012, Springer Handbook of Geographic Information.

[20]  Vania Bogorny,et al.  CONSTAnT – A Conceptual Data Model for Semantic Trajectories of Moving Objects , 2014, Trans. GIS.

[21]  Stefano Spaccapietra,et al.  Conceptual modeling for traditional and spatio-temporal applications - the MADS approach , 2006 .