Measuring decoherence properties of charge qubits using buried donor cellular automata

Quantum-dot Cellular Automata (QDCA) provide an interesting experimental system with which to study the interaction of a charge-based two-level system with the surrounding solid-state environment. This is particularly important given the recent interest in solid-state quantum computers using charge-qubits. We show that many of the properties of these qubits, coupling strength, tunnelling time, relaxation rate and dephasing time can be estimated using a QDCA cell like structure. Calculations are performed for the case of buried donors in silicon but the results are equally applicable to other forms of charge-qubit.

[1]  C. Lent,et al.  Realization of a Functional Cell for Quantum-Dot Cellular Automata , 1997 .

[2]  A. Greentree,et al.  Modelling single electron transfer in Si:P double quantum dots , 2004, quant-ph/0409077.

[3]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[4]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[5]  T. M. Buehler,et al.  Correlated charge detection for readout of a solid-state quantum computer , 2003 .

[6]  Andrew D. Greentree,et al.  Single-shot readout with the radio-frequency single-electron transistor in the presence of charge noise , 2003 .

[7]  Charles G. Smith,et al.  Computation Without Current , 1999, Science.

[8]  T. M. Buehler,et al.  Development and operation of the twin radio frequency single electron transistor for cross-correlated charge detection , 2003 .

[9]  Marc Kastner,et al.  Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures , 1993 .

[10]  Walter Kohn,et al.  Shallow Impurity States in Silicon and Germanium , 1957 .

[11]  K. A. Valiev,et al.  Coherent charge qubits based on GaAs quantum dots with a built-in barrier , 2000 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[14]  G. J. Milburn,et al.  Measuring the decoherence rate in a semiconductor charge qubit , 2003 .

[15]  Gary H. Bernstein,et al.  Experimental demonstration of a binary wire for quantum-dot cellular automata , 1999 .

[16]  G. Bastard,et al.  Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. , 1990, Physical review. B, Condensed matter.

[17]  T. M. Buehler,et al.  Progress in silicon-based quantum computing , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  David A. Ritchie,et al.  Evidence for transfer of polarization in a quantum dot cellular automata cell consisting of semiconductor quantum dots , 2003 .

[19]  G. J. Milburn,et al.  Charge-based quantum computing using single donors in semiconductors , 2004 .

[20]  L. Fedichkin,et al.  Error rate of a charge qubit coupled to an acoustic phonon reservoir (4 pages) , 2004 .

[21]  Andrew D. Greentree,et al.  Quantum-dot cellular automata using buried dopants , 2005 .

[22]  C. Lent,et al.  Maxwell's demon and quantum-dot cellular automata , 2003 .