A framework for understanding efficient diurnal CO2 reduction using Si and GaAs photocathodes

[1]  Bin Liu,et al.  Back-illuminated photoelectrochemical flow cell for efficient CO2 reduction , 2022, Nature Communications.

[2]  Anxiang Guan,et al.  Defect‐Assisted Electron Tunneling for Photoelectrochemical CO2 Reduction to Ethanol at Low Overpotentials , 2022, Advanced Energy Materials.

[3]  L. Wang,et al.  Roughness Effect of Cu on Electrocatalytic CO2 Reduction towards C2H4. , 2022, Chemistry, an Asian journal.

[4]  James L. Young,et al.  Demonstration of photoreactor platform for on-sun unassisted photoelectrochemical hydrogen generation with tandem III–V photoelectrodes , 2022, Chem Catalysis.

[5]  Christine M. Gabardo,et al.  Downstream of the CO2 Electrolyzer: Assessing the Energy Intensity of Product Separation , 2021, ACS Energy Letters.

[6]  Xintao Wu,et al.  Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability , 2021, Energy & Environmental Science.

[7]  H. Atwater,et al.  Unassisted Highly Selective Gas-Phase CO2 Reduction with a Plasmonic Au/p-GaN Photocatalyst Using H2O as an Electron Donor , 2021, ACS Energy Letters.

[8]  H. Atwater,et al.  Comparative Technoeconomic Analysis of Renewable Generation of Methane Using Sunlight, Water, and Carbon Dioxide , 2021, ACS Energy Letters.

[9]  Siyu Lu,et al.  Thermally-assisted photocatalytic CO2 reduction to fuels , 2021, Chemical Engineering Journal.

[10]  M. Biener,et al.  Scalable fabrication of high activity nanoporous copper powders for electrochemical CO2 reduction via ball milling and dealloying , 2021 .

[11]  K. Catchpole,et al.  First Hole-Storage Enhanced a-Si Photocathodes for Efficient Hydrogen Production. , 2021, Angewandte Chemie.

[12]  Chuanyi Wang,et al.  Thermal coupled photocatalysis to enhance CO2 reduction activities on Ag loaded g-C3N4 catalysts , 2021 .

[13]  P. Agbo J–V Decoupling: Independent Control over Current and Potential in Electrocatalysis , 2020, Journal of Physical Chemistry C.

[14]  J. Assaf,et al.  Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: Effects of chemical composition and surface morphology , 2020 .

[15]  Hong Wang,et al.  Carbon Encapsulation of Organic–Inorganic Hybrid Perovskite toward Efficient and Stable Photo‐Electrochemical Carbon Dioxide Reduction , 2020, Advanced Energy Materials.

[16]  Jr-hau He,et al.  Spontaneous solar water splitting with decoupling of light absorption and electrocatalysis using silicon back-buried junction , 2020, Nature Communications.

[17]  Adam C. Nielander,et al.  Addressing the Stability Gap in Photoelectrochemistry: Molybdenum Disulfide Protective Catalysts for Tandem III–V Unassisted Solar Water Splitting , 2020 .

[18]  Le He,et al.  Enhancing photothermal CO2 catalysis by thermal insulating substrates , 2020, Rare Metals.

[19]  P. Ding,et al.  Photocathode engineering for efficient photoelectrochemical CO2 reduction , 2020 .

[20]  C. Janáky,et al.  Recent Advances in Solar-Driven Carbon Dioxide Conversion: Expectations versus Reality , 2020, ACS energy letters.

[21]  Wilson A. Smith,et al.  Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially Viable Current Densities , 2020, ACS catalysis.

[22]  P. Agbo,et al.  Stable Photoelectrochemical Hydrogen Evolution for 1000 h at 14% Efficiency in a Monolithic Vapor-fed Device , 2020, Journal of The Electrochemical Society.

[23]  P. Altermatt,et al.  24.58% total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design , 2020 .

[24]  Yue Zhang,et al.  Tailored TiO2 Protection Layer Enabled Efficient and Stable Microdome Structured p‐GaAs Photoelectrochemical Cathodes , 2020, Advanced Energy Materials.

[25]  H. Atwater,et al.  CO2 Reduction to CO with 19% Efficiency in a Solar-Driven Gas Diffusion Electrode Flow Cell under Outdoor Solar Illumination , 2020, ACS Energy Letters.

[26]  Shahid Rasul,et al.  Copper-indium binary catalyst on gas diffusion electrode for high-performance CO2 electrochemical reduction with record CO production efficiency. , 2019, ACS applied materials & interfaces.

[27]  K. Livi,et al.  Copper Nanocubes for CO2 Reduction in Gas Diffusion Electrodes. , 2019, Nano letters.

[28]  Jr-hau He,et al.  An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction , 2019, Nature Communications.

[29]  Adam C. Nielander,et al.  Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area , 2019, Nature Catalysis.

[30]  James L. Young,et al.  Interfacial engineering of gallium indium phosphide photoelectrodes for hydrogen evolution with precious metal and non-precious metal based catalysts , 2019, Journal of Materials Chemistry A.

[31]  J. Nørskov,et al.  Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. , 2019, Chemical reviews.

[32]  Christine M. Gabardo,et al.  Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design , 2019, Advanced materials.

[33]  F. Toma,et al.  Si photocathode with Ag-supported dendritic Cu catalyst for CO2reduction , 2019, Energy & Environmental Science.

[34]  Mengxin Chen,et al.  Photoelectrochemical CO2 reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO2/Au photocathodes with low onset potentials , 2019, Energy & Environmental Science.

[35]  Timothy A. Goetjen,et al.  Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV , 2018 .

[36]  J. Qiu,et al.  Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry , 2018 .

[37]  R. Kostecki,et al.  Surface‐Plasmon‐Assisted Photoelectrochemical Reduction of CO2 and NO3− on Nanostructured Silver Electrodes , 2018 .

[38]  Z. Mi,et al.  Photoelectrochemical CO2 Reduction into Syngas with the Metal/Oxide Interface. , 2018, Journal of the American Chemical Society.

[39]  Chao Wang,et al.  Recent Advances in CO2 Reduction Electrocatalysis on Copper , 2018, ACS Energy Letters.

[40]  H. Atwater,et al.  Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes. , 2018, Nano letters.

[41]  N. Wu Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review. , 2018, Nanoscale.

[42]  J. Spurgeon,et al.  Photoelectrochemical reduction of CO2 to HCOOH on silicon photocathodes with reduced SnO2 porous nanowire catalysts , 2018 .

[43]  T. Andreu,et al.  A photoelectrochemical flow cell design for the efficient CO2 conversion to fuels , 2017 .

[44]  G. Palmore,et al.  Electroreduction of CO2 on polycrystalline copper: Effect of temperature on product selectivity , 2017 .

[45]  T. Jaramillo,et al.  Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons , 2017, Proceedings of the National Academy of Sciences.

[46]  M. Steiner,et al.  Apparent bandgap shift in the internal quantum efficiency for solar cells with back reflectors , 2017 .

[47]  Sung-Yoon Chung,et al.  Nanoporous Au Thin Films on Si Photoelectrodes for Selective and Efficient Photoelectrochemical CO2 Reduction , 2017 .

[48]  Yu-Min Chen,et al.  Mycobacterium abscessus complex bacteremia due to prostatitis after prostate biopsy. , 2016, Indian Journal of Tuberculosis.

[49]  P. Yang,et al.  Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction. , 2016, Nano letters.

[50]  Jin Jang,et al.  Highly efficient photoelectrochemical water splitting by a hybrid tandem perovskite solar cell. , 2016, Chemical communications.

[51]  Fuding Lin,et al.  Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting. , 2016, Accounts of chemical research.

[52]  Adam C. Nielander,et al.  Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation , 2015 .

[53]  Matthew W. Kanan,et al.  Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. , 2015, Journal of the American Chemical Society.

[54]  Charles C. L. McCrory,et al.  Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. , 2015, Journal of the American Chemical Society.

[55]  Yongtang Li,et al.  Effect of Annealing on Microstructure and Mechanical Properties of Magnetron Sputtered Cu Thin Films , 2015 .

[56]  Kimberly M. Papadantonakis,et al.  A taxonomy for solar fuels generators , 2015 .

[57]  S. Glunz,et al.  Tunnel oxide passivated contacts as an alternative to partial rear contacts , 2014 .

[58]  Frances A. Houle,et al.  Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting , 2014 .

[59]  Hyunwoong Park,et al.  Sn‐Coupled p‐Si Nanowire Arrays for Solar Formate Production from CO2 , 2014 .

[60]  S. Glunz,et al.  Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics , 2014 .

[61]  J. Long,et al.  Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. , 2013, Journal of the American Chemical Society.

[62]  K. Rajeshwar,et al.  Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[63]  A. Asthagiri,et al.  Selectivity of CO(2) reduction on copper electrodes: the role of the kinetics of elementary steps. , 2013, Angewandte Chemie.

[64]  Dushmanta Dutta,et al.  Effect of substrate on surface morphology and photocatalysis of large-scale TiO2 films , 2013 .

[65]  Daniel G Nocera,et al.  Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves , 2012, Proceedings of the National Academy of Sciences.

[66]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[67]  Ib Chorkendorff,et al.  Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, Nature materials.

[68]  M. Saremi,et al.  A comparison between the corrosion behavior of nanostructured copper thin films deposited on oxidized silicon and copper sheet in alkaline media , 2010 .

[69]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[70]  Andrew B. Bocarsly,et al.  Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. , 2008, Journal of the American Chemical Society.

[71]  Eric L. Miller,et al.  High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes , 1998 .

[72]  D. L. King,et al.  Measuring solar spectral and angle-of-incidence effects on photovoltaic modules and solar irradiance sensors , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[73]  Eric L. Miller,et al.  Photoelectrochemical production of hydrogen : Engineering loss analysis , 1997 .

[74]  A. Bard,et al.  Electrochemical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Aqueous Solutions , 1989 .

[75]  W. Bonner,et al.  Spontaneous Photoelectrolysis of HBr and HI , 1982 .

[76]  I. Solomon,et al.  Spin-dependent recombination in a silicon p-n junction , 1976 .

[77]  C. Sah,et al.  Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics , 1957, Proceedings of the IRE.