GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic culture of human embryonic stem cells

[1]  H. Jang,et al.  Core Pluripotency Factors Directly Regulate Metabolism in Embryonic Stem Cell to Maintain Pluripotency , 2015, Stem cells.

[2]  T. Sanchez-Elsner,et al.  HIF-2α Regulates NANOG Expression in Human Embryonic Stem Cells following Hypoxia and Reoxygenation through the Interaction with an Oct-Sox Cis Regulatory Element , 2014, PloS one.

[3]  K. Aldape,et al.  PKM2 Phosphorylates Histone H3 and Promotes Gene Transcription and Tumorigenesis , 2014, Cell.

[4]  Shuo Lin,et al.  GLUT3 gene expression is critical for embryonic growth, brain development and survival. , 2014, Molecular genetics and metabolism.

[5]  Bo Zhang,et al.  The effect of HIF-1α on glucose metabolism, growth and apoptosis of pancreatic cancerous cells. , 2014, Asia Pacific journal of clinical nutrition.

[6]  E. Wanker,et al.  HIF1α Modulates Cell Fate Reprogramming Through Early Glycolytic Shift and Upregulation of PDK1–3 and PKM2 , 2014, Stem cells.

[7]  P. Calder,et al.  Effect of Oxygen Tension on the Amino Acid Utilisation of Human Embryonic Stem Cells , 2014, Cellular Physiology and Biochemistry.

[8]  Angela M. Liu,et al.  miR-122 Targets Pyruvate Kinase M2 and Affects Metabolism of Hepatocellular Carcinoma , 2014, PloS one.

[9]  C. Pecqueur,et al.  Control of glioma cell death and differentiation by PKM2–Oct4 interaction , 2014, Cell Death and Disease.

[10]  H. Kung,et al.  JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α–mediated glucose metabolism , 2013, Proceedings of the National Academy of Sciences.

[11]  D. K. Arrell,et al.  Metabolome and metaboproteome remodeling in nuclear reprogramming , 2013, Cell cycle.

[12]  T. Sanchez-Elsner,et al.  Environmental Oxygen Tension Regulates the Energy Metabolism and Self-Renewal of Human Embryonic Stem Cells , 2013, PloS one.

[13]  K. Aldape,et al.  ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect , 2012, Nature Cell Biology.

[14]  Patrick S. Stumpf,et al.  Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity , 2012, Nature Cell Biology.

[15]  Xueliang Gao,et al.  Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. , 2012, Molecular cell.

[16]  Michael S. Goldberg,et al.  Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression , 2012, The Journal of experimental medicine.

[17]  Timothy J. Nelson,et al.  Energy metabolism in nuclear reprogramming. , 2011, Biomarkers in medicine.

[18]  Juan Carlos Izpisua Belmonte,et al.  The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming , 2011, Cell Research.

[19]  K. Aldape,et al.  Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation , 2011, Nature.

[20]  S. Mazurek Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. , 2011, The international journal of biochemistry & cell biology.

[21]  G. Schatten,et al.  Energy Metabolism in Human Pluripotent Stem Cells and Their Differentiated Counterparts , 2011, PloS one.

[22]  Matthew K. Knabel,et al.  Pyruvate Kinase M2 Is a PHD3-Stimulated Coactivator for Hypoxia-Inducible Factor 1 , 2011, Cell.

[23]  L. Squire,et al.  Memory, Visual Discrimination Performance, and the Human Hippocampus , 2011, The Journal of Neuroscience.

[24]  Jason W. Locasale,et al.  Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells , 2010, Science.

[25]  Shau-Ping Lin,et al.  Hypoxic culture maintains self-renewal and enhances embryoid body formation of human embryonic stem cells. , 2010, Tissue engineering. Part A.

[26]  P. Andrews,et al.  Generation of Sheffield (Shef) human embryonic stem cell lines using a microdrop culture system , 2010, In Vitro Cellular & Developmental Biology - Animal.

[27]  Richard O C Oreffo,et al.  Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions , 2010, Reproduction.

[28]  Jing Chen,et al.  Tyrosine Phosphorylation Inhibits PKM2 to Promote the Warburg Effect and Tumor Growth , 2009, Science Signaling.

[29]  A. Ben-Yehudah,et al.  Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. , 2009, Stem cell research.

[30]  V. Zachar,et al.  Continuous hypoxic culturing maintains activation of Notch and allows long‐term propagation of human embryonic stem cells without spontaneous differentiation , 2009, Cell proliferation.

[31]  L. Hearne,et al.  Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells. , 2008, Stem cells and development.

[32]  H. Christofk,et al.  Pyruvate kinase M2 is a phosphotyrosine-binding protein , 2008, Nature.

[33]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[34]  N. Illsley,et al.  Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. , 2007, American journal of physiology. Cell physiology.

[35]  H. Han,et al.  Effect of Hypoxia on 2-Deoxyglucose Uptake and Cell Cycle Regulatory Protein Expression of Mouse Embryonic Stem Cells: Involvement of Ca2+ /PKC, MAPKs and HIF-1α , 2007, Cellular Physiology and Biochemistry.

[36]  A. Ullrich,et al.  Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. , 2007, Cancer research.

[37]  Andre Terzic,et al.  Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells , 2007, Nature Clinical Practice Cardiovascular Medicine.

[38]  D. Beach,et al.  A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. , 2006, Antioxidants & redox signaling.

[39]  X. Chen,et al.  The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells , 2006, Nature Genetics.

[40]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[41]  R. Roberts,et al.  Low O2 tensions and the prevention of differentiation of hES cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Harvey,et al.  Oxygen‐regulated expression of GLUT‐1, GLUT‐3, and VEGF in the mouse blastocyst , 2005, Molecular reproduction and development.

[43]  Chad A. Cowan,et al.  Derivation of embryonic stem-cell lines from human blastocysts. , 2004, The New England journal of medicine.

[44]  Huasheng Lu,et al.  Hypoxia-inducible Factor 1 Activation by Aerobic Glycolysis Implicates the Warburg Effect in Carcinogenesis* , 2002, The Journal of Biological Chemistry.

[45]  H. Leese,et al.  Non-invasive amino acid turnover predicts human embryo developmental capacity. , 2002, Human reproduction.

[46]  J. Thomson,et al.  Embryonic stem cell lines derived from human blastocysts. , 1998, Science.

[47]  D. James,et al.  Glucose transporter GLUT3: ontogeny, targeting, and role in the mouse blastocyst. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  F. Ismail-Beigi,et al.  The effect of hypoxia on human trophoblast in culture: morphology, glucose transport and metabolism. , 1997, Placenta.

[49]  G. Semenza,et al.  Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. , 1994, The Journal of biological chemistry.

[50]  S. Morgello,et al.  Tissue distribution of the human GLUT3 glucose transporter. , 1993, Endocrinology.

[51]  T. Jess,et al.  Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. , 1993, The Biochemical journal.

[52]  C. Burant,et al.  Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins. , 1992, Biochemistry.

[53]  B. Kahn,et al.  Distribution of GLUT3 glucose transporter protein in human tissues. , 1992, Biochemical and biophysical research communications.

[54]  J. Flier,et al.  Regulation of Glucose-Transporter Gene Expression In Vitro and In Vivo , 1990, Diabetes Care.

[55]  G. Lienhard,et al.  The blood—nerve barrier is rich in glucose transporter , 1988, Journal of neurocytology.

[56]  A. McCall,et al.  Distribution of glucose transporter messenger RNA transcripts in tissues of rat and man. , 1987, The Journal of clinical investigation.

[57]  T. Tanaka,et al.  The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. , 1986, The Journal of biological chemistry.

[58]  G. Martin,et al.  Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Kaufman,et al.  Establishment in culture of pluripotential cells from mouse embryos , 1981, Nature.

[60]  E. Boyland Metabolism of Tumours , 1940, Nature.

[61]  J. Shirlaw THE METABOLISM OF TUMOURS , 1931 .

[62]  Jungho Kim,et al.  Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. , 2008, The international journal of biochemistry & cell biology.

[63]  P. Huppert,et al.  Expression of hypoxia-inducible genes in tumor cells , 1998, Journal of Cancer Research and Clinical Oncology.

[64]  J A Thomson,et al.  Primate embryonic stem cells. , 1998, Current topics in developmental biology.

[65]  C. Burant,et al.  Mammalian glucose transporters: structure and molecular regulation. , 1991, Recent progress in hormone research.