When Is a Function Securely Computable?

A subset of a set of terminals that observe correlated signals seek to compute a function of the signals using public communication. It is required that the value of the function be concealed from an eavesdropper with access to the communication. We show that the function is securely computable if and only if its entropy is less than the capacity of a new secrecy generation model, for which a single-letter characterization is provided.

[1]  P. Narayan,et al.  Common randomness and secret key generation with a helper , 1997, Proceedings of IEEE International Symposium on Information Theory.

[2]  Michel Loève,et al.  Probability Theory I , 1977 .

[3]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[4]  Venkat Anantharam,et al.  Information-Theoretic Key Agreement of Multiple Terminals—Part I , 2010, IEEE Transactions on Information Theory.

[5]  Prakash Narayan,et al.  Secret Key and Private Key Constructions for Simple Multiterminal Source Models , 2005, IEEE Transactions on Information Theory.

[6]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[7]  Aaron D. Wyner,et al.  Recent results in the Shannon theory , 1974, IEEE Trans. Inf. Theory.

[8]  Imre Csiszár,et al.  Common randomness and secret key generation with a helper , 2000, IEEE Trans. Inf. Theory.

[9]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[10]  Imre Csiszár,et al.  Secrecy Capacities for Multiterminal Channel Models , 2005, IEEE Transactions on Information Theory.

[11]  Imre Csiszár,et al.  Secrecy capacities for multiple terminals , 2004, IEEE Transactions on Information Theory.

[12]  Piyush Gupta,et al.  Information-theoretic bounds for multiround function computation in collocated networks , 2009, 2009 IEEE International Symposium on Information Theory.

[13]  Prakash Narayan,et al.  When Is a Function Securely Computable? , 2011, IEEE Trans. Inf. Theory.

[14]  Alon Orlitsky,et al.  Coding for computing , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[15]  Prakash Narayan,et al.  Secret key and private key constructions for simple multiterminal source models , 2005, ISIT.

[16]  Robert G. Gallager,et al.  Finding parity in a simple broadcast network , 1988, IEEE Trans. Inf. Theory.

[17]  János Körner,et al.  How to encode the modulo-two sum of binary sources (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[18]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[19]  Panganamala Ramana Kumar,et al.  Computing and communicating functions over sensor networks , 2005, IEEE Journal on Selected Areas in Communications.

[20]  Himanshu Tyagi,et al.  Secure computing , 2010, 2010 IEEE International Symposium on Information Theory.

[21]  Alon Orlitsky,et al.  Communication with secrecy constraints , 1984, STOC '84.

[22]  Rudolf Ahlswede,et al.  On Oblivious Transfer Capacity , 2007, 2007 IEEE International Symposium on Information Theory.

[23]  J. Massey,et al.  Communications and Cryptography: Two Sides of One Tapestry , 1994 .

[24]  Anderson C. A. Nascimento,et al.  On the Oblivious Transfer Capacity of Noisy Correlations , 2006, 2006 IEEE International Symposium on Information Theory.

[25]  Chunxuan Ye,et al.  Information Theoretic Generation of Multiple Secret Keys , 2005 .