THE MIDLATITUDE CONTINENTAL CONVECTIVE CLOUDS EXPERIMENT (MC3E).

AbstractThe Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission, was conducted in south-central Oklahoma during April–May 2011. MC3E science objectives were motivated by the need to improve our understanding of midlatitude continental convective cloud system life cycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives, a multiscale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during MC3E, of which results from three deep convective events are highlighted. Vertical structure, air motions, precipitation drop size distributions, and ice properties were retrieved from multiwavelength radar, profiler, and aircraft observations for a mesoscale convec...

[1]  R. Marchand,et al.  Evaluation of the Multiscale Modeling Framework Using Data from the Atmospheric Radiation Measurement Program , 2006 .

[2]  John R. Stonitsch Evolution of boundary layer wind and moisture fields along a front during IHOP , 2004 .

[3]  Pavlos Kollias,et al.  Scanning ARM Cloud Radars. Part II: Data Quality Control and Processing , 2014 .

[4]  V. Chandrasekar,et al.  Salient features of the dual‐frequency, dual‐polarized, Doppler radar for remote sensing of precipitation , 2014 .

[5]  Scott E. Giangrande,et al.  An Application of Linear Programming to Polarimetric Radar Differential Phase Processing , 2013 .

[6]  A. Tokay,et al.  An Experimental Study of Spatial Variability of Rainfall , 2014 .

[7]  P. Kollias,et al.  Insights from modeling and observational evaluation of a precipitating continental cumulus event observed during the MC3E field campaign , 2015 .

[8]  Piotr K. Smolarkiewicz,et al.  CRCP: a cloud resolving convection parameterization for modeling the tropical convecting atmosphere , 1999 .

[9]  Di Wu,et al.  Benefits of a 4th Ice Class in the Simulated Radar Reflectivities of Convective Systems Using a Bulk Microphysics Scheme , 2014 .

[10]  Balwinder Singh,et al.  Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice , 2014 .

[11]  Kenneth S. Gage,et al.  Vertical Structure of Precipitation and Related Microphysics Observed by NOAA Profilers and TRMM during NAME 2004 , 2007 .

[12]  Lihua Li,et al.  Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar , 2013 .

[13]  A. Dai Global Precipitation and Thunderstorm Frequencies. Part II: Diurnal Variations , 2001 .

[14]  S. Rutledge,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder” Process in Warm-Frontal Rainbands , 1983 .

[15]  Sutherland,et al.  Statewide Monitoring of the Mesoscale Environment: A Technical Update on the Oklahoma Mesonet , 2007 .

[16]  Isztar Zawadzki,et al.  Variability of Drop Size Distributions: Time-Scale Dependence of the Variability and Its Effects on Rain Estimation , 2005 .

[17]  Witold F. Krajewski,et al.  Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma , 2006 .

[18]  Martin Perrine,et al.  Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler , 2011, 2011 Aerospace Conference.

[19]  Jimmy W. Voyles,et al.  The Arm Climate Research Facility: A Review of Structure and Capabilities , 2013 .

[20]  C. Long,et al.  Total Sky Imager Model 880 Status and Testing Results , 2001 .

[21]  A. Kilambi,et al.  Extraction of near-surface index of refraction using radar phase measurements from ground targets , 1997, IEEE Antennas and Propagation Society International Symposium 1997. Digest.

[22]  A. Hou,et al.  The Global Precipitation Measurement Mission , 2014 .

[23]  Philip Parker,et al.  The Real Time Mission Monitor: A Situational Awareness Tool For Managing Experiment Assets , 2007 .

[24]  N. A. Crook Sensitivity of Moist Convection Forced by Boundary Layer Processes to Low-Level Thermodynamic Fields , 1996 .

[25]  Rodger A. Brown,et al.  Error Sources and Accuracy of Vertical Velocities Computed from Multiple-Doppler Radar Measurements in Deep Convective Storms , 1987 .

[26]  A. Genio,et al.  ARM's Support for GCM Improvement: A White Paper , 2006 .

[27]  A. Tokay,et al.  An Experimental Study of the Small-Scale Variability of Rainfall , 2012 .

[28]  Pavlos Kollias,et al.  First Observations of Tracking Clouds Using Scanning ARM Cloud Radars , 2014 .

[29]  Martin Köhler,et al.  Modelling the diurnal cycle of deep precipitating convection over land with cloud‐resolving models and single‐column models , 2004 .

[30]  Michael Dixon,et al.  The emergence of open-source software for the weather radar community , 2015 .

[31]  Witold F. Krajewski,et al.  Uncertainty Analysis of the TRMM Ground-Validation Radar-Rainfall Products: Application to the TEFLUN-B Field Campaign , 2002 .

[32]  J. O'Brien,et al.  Alternative Solutions to the Classical Vertical Velocity Problem. , 1970 .

[33]  Eric A. Smith,et al.  High-resolution imaging of rain systems with the advanced microwave precipitation radiometer , 1994 .

[34]  Richard J. Doviak,et al.  Dual-Doppler Observation of a Tornadic Storm. , 1975 .

[35]  S. Schwartz,et al.  The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed , 1994 .

[36]  C. Williams Vertical Air Motion Retrieved from Dual-Frequency Profiler Observations , 2012 .

[37]  Jerry M. Straka,et al.  A Summary of Convective-Core Vertical Velocity Properties Using ARM UHF Wind Profilers in Oklahoma , 2013 .

[38]  Clemens Simmer,et al.  Partitioning of cloud water and rainwater content by ground‐based observations with the Advanced Microwave Radiometer for Rain Identification (ADMIRARI) in synergy with a micro rain radar , 2012 .

[39]  Benjamin T. Johnson,et al.  The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part II: Initial Testing Using Radar, Radiometer and In Situ Observations , 2016 .

[40]  V. Chandrasekar,et al.  A Robust C-Band Hydrometeor Identification Algorithm and Application to a Long-Term Polarimetric Radar Dataset , 2013 .

[41]  Alexander V. Ryzhkov,et al.  Cloud Microphysics Retrieval Using S-Band Dual-Polarization Radar Measurements , 1999 .

[42]  E. Clothiaux,et al.  The Atmospheric Radiation Measurement Program Cloud Profiling Radars: Second-Generation Sampling Strategies, Processing, and Cloud Data Products , 2007 .

[43]  Jerry M. Straka,et al.  TELEX: The Thunderstorm Electrification and Lightning Experiment , 2008 .

[44]  E. Anagnostou,et al.  Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations , 2004 .

[45]  A. Ryzhkov,et al.  Polarimetry for Weather Surveillance Radars , 1999 .

[46]  A. Waldvogel,et al.  Raindrop Size Distribution and Sampling Size Errors , 1969 .

[47]  Jordan G. Powers,et al.  A Description of the Advanced Research WRF Version 2 , 2005 .

[48]  David A. Randall,et al.  High-Resolution Simulation of Shallow-to-Deep Convection Transition over Land , 2006 .

[49]  V. N. Bringi,et al.  Estimation of Spatial Correlation of Drop Size Distribution Parameters and Rain Rate Using NASA's S-Band Polarimetric Radar and 2D Video Disdrometer Network: Two Case Studies from MC3E , 2015 .

[50]  E. Clothiaux,et al.  Objective Determination of Cloud Heights and Radar Reflectivities Using a Combination of Active Remote Sensors at the ARM CART Sites , 2000 .

[51]  Brooks E. Martner,et al.  An Unattended Cloud-Profiling Radar for Use in Climate Research , 1998 .

[52]  Kwo-Sen Kuo,et al.  The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part I: An Extensive Database of Simulated Pristine Crystals and Aggregate Particles, and Their Scattering Properties , 2016 .

[53]  Yunyan Zhang,et al.  Interactions between cumulus convection and its environment as revealed by the MC3E sounding array , 2014 .

[54]  Conrad L. Ziegler,et al.  Single- and Multiple-Doppler Radar Observations of Tornadic Storms , 1980 .

[55]  Gerald M. Stokes,et al.  The Atmospheric Radiation Measurement Program , 2003 .

[56]  A. Dai Precipitation Characteristics in Eighteen Coupled Climate Models , 2006 .

[57]  Christopher D. Curtis,et al.  Refractivity Retrieval Using the Phased-Array Radar: First Results and Potential for Multimission Operation , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Jerry M. Straka,et al.  Testing a Procedure for Automatic Classification of Hydrometeor Types , 2001 .

[59]  R. Houze,et al.  Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part I: Spatial Distribution of Updrafts, Downdrafts, and Precipitation , 1995 .

[60]  B. Soden,et al.  The Sensitivity of the Tropical-Mean Radiation Budget , 2005 .

[61]  Minghua Zhang,et al.  Constrained Variational Analysis of Sounding Data Based on Column-Integrated Budgets of Mass, Heat, Moisture, and Momentum: Approach and Application to ARM Measurements. , 1997 .

[62]  Aaron Bansemer,et al.  Effective ice particle densities for cold anvil cirrus , 2004 .

[63]  Isztar Zawadzki,et al.  Optimization of Dynamic Retrievals from a Multiple-Doppler Radar Network , 2000 .

[64]  V. Chandrasekar,et al.  Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification , 2000 .

[65]  Thomas Matejka,et al.  The accuracy of vertical air velocities from Doppler radar data , 1998 .

[66]  Yunyan Zhang,et al.  The Midlatitude Continental Convective Clouds Experiment (MC3E) sounding network: operations, processing and analysis , 2014 .

[67]  V. Chandrasekar,et al.  REFRACTT 2006 : Real-Time Retrieval of High-Resolution, Low-Level Moisture Fields from Operational NEXRAD and Research Radars , 2008 .

[68]  Lawrence D. Carey,et al.  Searching for Large Raindrops: A Global Summary of Two-Dimensional Video Disdrometer Observations , 2015 .

[69]  E. Zipser,et al.  The Vertical Profile of Radar Reflectivity of Convective Cells: A Strong Indicator of Storm Intensity and Lightning Probability? , 1994 .

[70]  E. Clothiaux,et al.  A Technique for the Automatic Detection of Insect Clutter in Cloud Radar Returns , 2008 .

[71]  Paul Racette,et al.  Airborne CoSMIR Observations Between 50 and 183 GHz Over Snow-Covered Sierra Mountains , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[72]  M. Yao,et al.  Cumulus Microphysics and Climate Sensitivity , 2005 .

[73]  Frédéric Fabry,et al.  Meteorological Value of Ground Target Measurements by Radar , 2004 .

[74]  Adam Theisen,et al.  Precipitation Estimation from the ARM Distributed Radar Network during the MC3E Campaign , 2012 .

[75]  V. Chandrasekar,et al.  Hydrometeor classification system using dual-polarization radar measurements: model improvements and in situ verification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[76]  Larry K. Berg,et al.  The Low-Level Jet over the Southern Great Plains Determined from Observations and Reanalyses and Its Impact on Moisture Transport , 2015 .

[77]  M. Jensen,et al.  Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites , 2006 .

[78]  P. Kollias,et al.  Scanning ARM Cloud Radars. Part I: Operational Sampling Strategies , 2014 .

[79]  Christian D. Kummerow,et al.  Global Precipitation Measurement , 2008 .

[80]  E. Luke,et al.  Signal Postprocessing and Reflectivity Calibration of the Atmospheric Radiation Measurement Program 915-MHz Wind Profilers , 2013 .

[81]  Patrick Gatlin,et al.  Comparison of Raindrop Size Distribution Measurements by Collocated Disdrometers , 2013 .

[82]  Alan Shapiro,et al.  New Formulations of Dual-Doppler Wind Analysis , 1999 .

[83]  V. Chandrasekar,et al.  Realization of the NASA Dual-Frequency Dual-Polarized Doppler Radar (D3R) , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[84]  M. Poellot,et al.  Observations of Ice Microphysics through the Melting Layer , 2015 .

[85]  Christopher J. Schultz,et al.  Drop size distribution comparisons between Parsivel and 2-D video disdrometers , 2011 .

[86]  Akio Arakawa,et al.  CLOUDS AND CLIMATE: A PROBLEM THAT REFUSES TO DIE. Clouds of many , 2022 .

[87]  L. Armijo,et al.  A Theory for the Determination of Wind and Precipitation Velocities with Doppler Radars. , 1969 .

[88]  R. Houze,et al.  Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity , 1995 .

[89]  A. Genio,et al.  The Role of Entrainment in the Diurnal Cycle of Continental Convection , 2010 .

[90]  Michael Schönhuber,et al.  The 2D-Video-Distrometer , 2008 .

[91]  Norbert Kalthoff,et al.  The Convective Storm Initiation Project , 2007 .

[92]  Christopher R. Williams,et al.  Reflectivity and Liquid Water Content Vertical Decomposition Diagrams to Diagnose Vertical Evolution of Raindrop Size Distributions , 2016 .

[93]  Alexander V. Ryzhkov,et al.  The Hydrometeor Classification Algorithm for the Polarimetric WSR-88D: Description and Application to an MCS , 2009 .

[94]  D. Cecil,et al.  Signatures of Hydrometeor Species from Airborne Passive Microwave Data for Frequencies 10–183 GHz , 2015 .

[95]  J. Testud,et al.  Three-Dimensional Wind Field Analysis from Dual-Doppler Radar Data. Part I: Filtering, Interpolating and Differentiating the Raw Data , 1983 .

[96]  S. Rutledge,et al.  Radar-Observed Characteristics of Precipitating Systems during NAME 2004 , 2007 .

[97]  I. Zawadzki,et al.  An Experimental Study of Small-Scale Variability of Radar Reflectivity Using Disdrometer Observations , 2004 .

[98]  M. Lemone,et al.  Vertical velocity in oceanic convection off tropical Australia , 1994 .

[99]  W. Grabowski Coupling Cloud Processes with the Large-Scale Dynamics Using the Cloud-Resolving Convection Parameterization (CRCP) , 2001 .

[100]  Pedro M. M. Soares,et al.  Sensitivity of moist convection to environmental humidity , 2004 .

[101]  J. Dudhia,et al.  A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation , 2004 .

[102]  Peter T. May,et al.  Evaluation of Microphysical Retrievals from Polarimetric Radar with Wind Profiler Data , 2005 .

[103]  Audrey B. Wolf,et al.  WRF and GISS SCM simulations of convective updraft properties during TWP‐ICE , 2009 .

[104]  Michele M. Rienecker,et al.  Precipitation intensity and variation during MC3E: A numerical modeling study , 2013 .

[105]  M. Garstang,et al.  Cloud and rain processes in a biosphere-atmosphere interaction context in the Amazon Region , 2002 .

[106]  Christopher S. Bretherton,et al.  A Mass-Flux Scheme View of a High-Resolution Simulation of a Transition from Shallow to Deep Cumulus Convection , 2006 .

[107]  Toshio Iguchi,et al.  Uncertainties in the Rain Profiling Algorithm for the TRMM Precipitation Radar(1. Precipitation Radar (PR), Precipitation Measurements from Space) , 2009 .

[108]  Mathew R. Schwaller,et al.  GPM Satellite Simulator over Ground Validation Sites , 2013 .

[109]  Kevin W. Manning,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis , 2004 .

[110]  D. Randall,et al.  A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results , 2001 .

[111]  Shu‐Hua Chen,et al.  A One-dimensional Time Dependent Cloud Model , 2002 .

[112]  J. Wyngaard,et al.  Resolution Requirements for the Simulation of Deep Moist Convection , 2003 .