On stationary multiplier methods for the rounding of probabilities and the limiting law of the Sainte-Laguë divergence

Stationary multiplier methods are procedures for rounding real probabilities into rational proportions, while the Sainte-Lague divergence is a reasonable measure for the cumulative error resulting from this rounding step. Assuming the given probabilities to be uniformly distributed, we show that the Sainte-Lague divergences converge to the Levy-stable distribution that obtains for the multiplier method with standard rounding. The norming constants to achieve convergence depend in a subtle way on the stationary method used.

[1]  Gregor Dorfleitner,et al.  Rounding with multiplier methods: An efficient algorithm and applications in statistics , 1999 .

[2]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[3]  Ingram Olkin,et al.  A majorization comparison of apportionment methods in proportional representation , 2002, Soc. Choice Welf..

[4]  Mathias Drton,et al.  Surface volumes of rounding polytopes , 2004 .

[5]  Harry V. Roberts,et al.  Statistics, a new approach , 1956 .

[6]  Friedrich Pukelsheim,et al.  Rounding probabilities: maximum probability and minimum complexity multipliers , 2000 .

[7]  Tetsuo Ichimori,et al.  ON THE UNBIASEDNESS OF THE PARAMETRIC DIVISOR METHOD FOR THE APPORTIONMENT PROBLEM , 1995 .

[8]  Happacher Max,et al.  Rounding Probabilities: Unbiased Multipliers , 1996 .

[9]  Friedrich Pukelsheim Mandatszuteilungen bei Verhältniswahlen: Erfolgswertgleichheit der Wählerstimmen , 2000 .

[10]  Friedrich Pukelsheim,et al.  Seat Biases in Proportional Representation Systems with Thresholds , 2006, Soc. Choice Welf..

[11]  A. Sainte-Laguë,et al.  La représentation proportionnelle et la méthode des moindres carrés , 1910 .

[12]  Tatsuo Oyama,et al.  ON A PARAMETRIC DIVISOR METHOD FOR THE APPORTIONMENT PROBLEM , 1991 .

[13]  清水 邦夫 Continuous Univariate Distributions Volume 1/N.L.Johnson,S.Kotz,N.Balakrishnan(1994) , 1995 .

[14]  Antonio Palomares,et al.  Thresholds of the Divisor Methods , 2003, Numerical Algorithms.

[15]  H. Peyton Young,et al.  Fair Representation: Meeting the Ideal of One Man, One Vote , 1982 .

[16]  Pukelsheim Friedrich,et al.  Sainte-Laguë’s chi-square divergence for the rounding of probabilities and its convergence to a stable law , 2004 .

[17]  Goodness-of-fit Criteria for the Adams and Jefferson Rounding Methods and their Limiting Laws , 2006 .

[18]  Svetlozar T. Rachev,et al.  Rounding Proportions:Rules of Rounding , 1993 .

[19]  Norman R. Draper,et al.  Seat biases of apportionment methods for proportional representation , 2003 .

[20]  Max Happacher,et al.  The discrepancy distribution of stationary multiplier rules for rounding probabilities , 2001 .

[21]  J. Kerstan,et al.  Gleichverteilungseigenschaften von Faltungen von Verteilungsgesetzen auf lokalkompakten abelschen Gruppen. II , 1968 .