Subexponential parameterized algorithms for degree-constrained subgraph problems on planar graphs

We present subexponential parameterized algorithms on planar graphs for a family of problems of the following shape: given a graph, find a connected (induced) subgraph with bounded maximum degree and with maximum number of edges (or vertices). These problems are natural generalisations of the Longest Path problem. Our approach uses bidimensionality theory combined with novel dynamic programming techniques over branch decompositions of the input graph. These techniques can be applied to a more general family of problems that deal with finding connected subgraphs under certain degree constraints.

[1]  Dimitrios M. Thilikos,et al.  Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.

[2]  Martin Fürer,et al.  Approximating the minimum degree spanning tree to within one from the optimal degree , 1992, SODA '92.

[3]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[4]  Paul A. Catlin,et al.  Supereulerian graphs: A survey , 1992, J. Graph Theory.

[5]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs , 2004, SODA '04.

[6]  B. Mohar,et al.  Graph Minors , 2009 .

[7]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[8]  Dimitrios M. Thilikos,et al.  Catalan structures and dynamic programming in H-minor-free graphs , 2008, SODA '08.

[9]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[10]  Dimitrios M. Thilikos,et al.  Subexponential parameterized algorithms , 2008, Comput. Sci. Rev..

[11]  Hisao Tamaki,et al.  Optimal branch-decomposition of planar graphs in O(n3) Time , 2005, TALG.

[12]  Stéphane Pérennes,et al.  Degree-Constrained Subgraph Problems: Hardness and Approximation Results , 2008, WAOA.

[13]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[14]  Germain Kreweras,et al.  Sur les partitions non croisees d'un cycle , 1972, Discret. Math..

[15]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions , 2005, ESA.

[16]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[17]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[18]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[19]  Hisao Tamaki,et al.  Constant-Factor Approximations of Branch-Decomposition and Largest Grid Minor of Planar Graphs in O(n1 + ε) Time , 2009, ISAAC.

[20]  Jan Arne Telle,et al.  Semi-nice tree-decompositions: The best of branchwidth, treewidth and pathwidth with one algorithm , 2009, Discret. Appl. Math..

[21]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[22]  Dimitrios M. Thilikos,et al.  New upper bounds on the decomposability of planar graphs , 2006, J. Graph Theory.