Voltage-Gated Calcium Channels

Voltage-gated calcium (Ca(2+)) channels are key transducers of membrane potential changes into intracellular Ca(2+) transients that initiate many physiological events. There are ten members of the voltage-gated Ca(2+) channel family in mammals, and they serve distinct roles in cellular signal transduction. The Ca(V)1 subfamily initiates contraction, secretion, regulation of gene expression, integration of synaptic input in neurons, and synaptic transmission at ribbon synapses in specialized sensory cells. The Ca(V)2 subfamily is primarily responsible for initiation of synaptic transmission at fast synapses. The Ca(V)3 subfamily is important for repetitive firing of action potentials in rhythmically firing cells such as cardiac myocytes and thalamic neurons. This article presents the molecular relationships and physiological functions of these Ca(2+) channel proteins and provides information on their molecular, genetic, physiological, and pharmacological properties.

[1]  W. Catterall,et al.  β-Adrenergic–regulated phosphorylation of the skeletal muscle CaV1.1 channel in the fight-or-flight response , 2010, Proceedings of the National Academy of Sciences.

[2]  W. Catterall,et al.  Molecular Mechanism of Calcium Channel Regulation in the Fight-or-Flight Response , 2010, Science Signaling.

[3]  R. Colbran,et al.  Ca2+-Dependent Facilitation of Cav1.3 Ca2+ Channels by Densin and Ca2+/Calmodulin-Dependent Protein Kinase II , 2010, The Journal of Neuroscience.

[4]  A. Dolphin,et al.  The α2δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function , 2010, Proceedings of the National Academy of Sciences.

[5]  E. Schroder,et al.  L-Type Calcium Channel C Terminus Autoregulates Transcription , 2009, Circulation research.

[6]  P. Rorsman,et al.  Exocytotic Properties of Human Pancreatic β‐cells , 2009, Annals of the New York Academy of Sciences.

[7]  Parsa Safa,et al.  CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation–transcription coupling , 2008, The Journal of cell biology.

[8]  W. Catterall,et al.  Calcium Channel Regulation and Presynaptic Plasticity , 2008, Neuron.

[9]  C. Romanin,et al.  Modulation of Voltage- and Ca2+-dependent Gating of CaV1.3 L-type Calcium Channels by Alternative Splicing of a C-terminal Regulatory Domain , 2008, Journal of Biological Chemistry.

[10]  Lena Eliasson,et al.  Novel aspects of the molecular mechanisms controlling insulin secretion , 2008, The Journal of physiology.

[11]  Steven W. Flavell,et al.  Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. , 2008, Annual review of neuroscience.

[12]  M. Waxham,et al.  Ca2+/Calmodulin-dependent Protein Kinases , 2008, Cellular and Molecular Life Sciences.

[13]  W. Catterall,et al.  Regulation of Presynaptic CaV2.1 Channels by Ca2+ Sensor Proteins Mediates Short-Term Synaptic Plasticity , 2008, Neuron.

[14]  W. Catterall,et al.  Modulation of CaV2.1 channels by Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain , 2008, Proceedings of the National Academy of Sciences.

[15]  T. Moser,et al.  Ca2+‐binding proteins tune Ca2+‐feedback to Cav1.3 channels in mouse auditory hair cells , 2007, The Journal of physiology.

[16]  E. Carbone,et al.  L-type calcium channels in adrenal chromaffin cells: role in pace-making and secretion. , 2007, Cell calcium.

[17]  W. Sather,et al.  AKAP79/150 Anchoring of Calcineurin Controls Neuronal L-Type Ca2+ Channel Activity and Nuclear Signaling , 2007, Neuron.

[18]  Aaron M. Beedle,et al.  RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels , 2007, Nature Neuroscience.

[19]  Annette C. Dolphin,et al.  Functional biology of the α 2 δ subunits of voltage-gated calcium channels , 2007 .

[20]  W. Catterall,et al.  Bidirectional Modulation of Transmitter Release by Calcium Channel/Syntaxin Interactions In Vivo , 2007, The Journal of Neuroscience.

[21]  R. Dolmetsch,et al.  The C Terminus of the L-Type Voltage-Gated Calcium Channel CaV1.2 Encodes a Transcription Factor , 2006, Cell.

[22]  W. Catterall,et al.  Phosphorylation of serine 1928 in the distal C-terminal domain of cardiac CaV1.2 channels during β1-adrenergic regulation , 2006, Proceedings of the National Academy of Sciences.

[23]  William A Catterall,et al.  Autoinhibitory control of the CaV1.2 channel by its proteolytically processed distal C‐terminal domain , 2006, The Journal of physiology.

[24]  P. Barrett,et al.  The molecular basis for T-type Ca2+ channel inhibition by G protein β2γ2 subunits , 2006, Proceedings of the National Academy of Sciences.

[25]  P. Barrett,et al.  Molecular basis for the modulation of native T-type Ca2+ channels in vivo by Ca2+/calmodulin-dependent protein kinase II. , 2006, The Journal of clinical investigation.

[26]  C. Romanin,et al.  C-terminal modulator controls Ca2+-dependent gating of Cav1.4 L-type Ca2+ channels , 2006, Nature Neuroscience.

[27]  Hee-Sup Shin,et al.  Bradycardia and Slowing of the Atrioventricular Conduction in Mice Lacking CaV3.1/&agr;1G T-Type Calcium Channels , 2006, Circulation research.

[28]  P. Berggren,et al.  The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. , 2006, Endocrine reviews.

[29]  R. Nicoll,et al.  Auxiliary Subunits Assist AMPA-Type Glutamate Receptors , 2006, Science.

[30]  W. Catterall,et al.  Overview of Molecular Relationships in the Voltage-Gated Ion Channel Superfamily , 2005, Pharmacological Reviews.

[31]  W. Catterall,et al.  International Union of Pharmacology. XLVIII. Nomenclature and Structure-Function Relationships of Voltage-Gated Calcium Channels , 2005, Pharmacological Reviews.

[32]  W. Catterall,et al.  Modulation of CaV2.1 Channels by the Neuronal Calcium-Binding Protein Visinin-Like Protein-2 , 2005, The Journal of Neuroscience.

[33]  W. Catterall,et al.  Sites of proteolytic processing and noncovalent association of the distal C-terminal domain of CaV1.1 channels in skeletal muscle. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  W. Catterall,et al.  Mechanism of SNARE protein binding and regulation of Cav2 channels by phosphorylation of the synaptic protein interaction site , 2005, Molecular and Cellular Neuroscience.

[35]  Hee-Sup Shin,et al.  Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking α1G-subunit of T-type calcium channels , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  W. Catterall,et al.  DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system. , 2004 .

[37]  T. Südhof The synaptic vesicle cycle , 2004 .

[38]  Ming-hui Li,et al.  Structural basis of the α1–β subunit interaction of voltage-gated Ca2+ channels , 2004, Nature.

[39]  Daniel L. Minor,et al.  Structure of a complex between a voltage-gated calcium channel β-subunit and an α-subunit domain , 2004, Nature.

[40]  Daesoo Kim,et al.  Role of the α1G T-Type Calcium Channel in Spontaneous Absence Seizures in Mutant Mice , 2004, The Journal of Neuroscience.

[41]  W. Catterall,et al.  Molecular determinants of Ca2+/calmodulin-dependent regulation of Cav2.1 channels , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[42]  L. Jan,et al.  Merging functional studies with structures of inward-rectifier K+ channels , 2003, Nature Reviews Neuroscience.

[43]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[44]  Annette C. Dolphin,et al.  β Subunits of Voltage-Gated Calcium Channels , 2003, Journal of bioenergetics and biomembranes.

[45]  E. Mccleskey,et al.  Permeation and selectivity in calcium channels. , 2003, Annual review of physiology.

[46]  P. Barrett,et al.  A Mechanism for the Direct Regulation of T-Type Calcium Channels by Ca2+/Calmodulin-Dependent Kinase II , 2003, The Journal of Neuroscience.

[47]  W. Catterall,et al.  β-Adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  N. Grigorieff,et al.  Visualization of the domain structure of an L-type Ca2+ channel using electron cryo-microscopy. , 2003, Journal of molecular biology.

[49]  P. Barrett,et al.  T-type calcium channel regulation by specific G-protein βγ subunits , 2003, Nature.

[50]  K. Campbell,et al.  Auxiliary subunits: essential components of the voltage-gated calcium channel complex , 2003, Current Opinion in Neurobiology.

[51]  A. Dolphin,et al.  3D structure of the skeletal muscle dihydropyridine receptor. , 2002, Journal of molecular biology.

[52]  W. Chiu,et al.  Structure of the voltage-gated L-type Ca2+ channel by electron cryomicroscopy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  W. Catterall,et al.  Differential modulation of Cav2.1 channels by calmodulin and Ca2+-binding protein 1 , 2002, Nature Neuroscience.

[54]  W. Catterall,et al.  A Novel Leucine Zipper Targets AKAP15 and Cyclic AMP-dependent Protein Kinase to the C Terminus of the Skeletal Muscle Ca2+ Channel and Modulates Its Function* , 2002, The Journal of Biological Chemistry.

[55]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[56]  R. Dolmetsch,et al.  Signaling to the Nucleus by an L-type Calcium Channel-Calmodulin Complex Through the MAP Kinase Pathway , 2001, Science.

[57]  D. T. Yue,et al.  Preassociation of Calmodulin with Voltage-Gated Ca2+ Channels Revealed by FRET in Single Living Cells , 2001, Neuron.

[58]  Andy Hudmon,et al.  Molecular Basis of Calmodulin Tethering and Ca2+-dependent Inactivation of L-type Ca2+ Channels* , 2001, The Journal of Biological Chemistry.

[59]  Daesoo Kim,et al.  Lack of the Burst Firing of Thalamocortical Relay Neurons and Resistance to Absence Seizures in Mice Lacking α1G T-Type Ca2+ Channels , 2001, Neuron.

[60]  M. Bünemann,et al.  C-terminal Fragments of the α1C(CaV1.2) Subunit Associate with and Regulate L-type Calcium Channels Containing C-terminal-truncated α1CSubunits* , 2001, The Journal of Biological Chemistry.

[61]  D. T. Yue,et al.  Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels , 2001, Nature.

[62]  W. Catterall,et al.  Ca2+/Calmodulin-Dependent Facilitation and Inactivation of P/Q-Type Ca2+ Channels , 2000, The Journal of Neuroscience.

[63]  L. Jan,et al.  Taking Apart the Gating of Voltage-Gated K+ Channels , 2000, Neuron.

[64]  J. Engel,et al.  Congenital Deafness and Sinoatrial Node Dysfunction in Mice Lacking Class D L-Type Ca2+ Channels , 2000, Cell.

[65]  W. Catterall,et al.  From Ionic Currents to Molecular Mechanisms The Structure and Function of Voltage-Gated Sodium Channels , 2000, Neuron.

[66]  M. Bünemann,et al.  Proteolytic Processing of the C Terminus of the α1CSubunit of L-type Calcium Channels and the Role of a Proline-rich Domain in Membrane Tethering of Proteolytic Fragments* , 2000, The Journal of Biological Chemistry.

[67]  N. Klugbauer,et al.  A family of γ‐like calcium channel subunits , 2000 .

[68]  R. Tsien,et al.  Nomenclature of Voltage-Gated Calcium Channels , 2000, Neuron.

[69]  Gail Mandel,et al.  Nomenclature of Voltage-Gated Sodium Channels , 2000, Neuron.

[70]  W. Catterall,et al.  Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin , 1999, Nature Neuroscience.

[71]  K. Page,et al.  Identification of Residues in the N Terminus of α1B Critical for Inhibition of the Voltage-Dependent Calcium Channel by Gβγ , 1999 .

[72]  Scott T. Wong,et al.  Ca2+/calmodulin binds to and modulates P/Q-type calcium channels , 1999, Nature.

[73]  K. Deisseroth,et al.  Calmodulin supports both inactivation and facilitation of L-type calcium channels , 1999, Nature.

[74]  R. Olcese,et al.  Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[75]  D. T. Yue,et al.  Calmodulin Is the Ca2+ Sensor for Ca2+-Dependent Inactivation of L-Type Calcium Channels , 1999, Neuron.

[76]  N. Klugbauer,et al.  Molecular Diversity of the Calcium Channel α2δ Subunit , 1999, The Journal of Neuroscience.

[77]  B. Hille,et al.  G-Protein β-Subunit Specificity in the Fast Membrane-Delimited Inhibition of Ca2+ Channels , 1998, The Journal of Neuroscience.

[78]  B. Sakmann,et al.  Facilitation of presynaptic calcium currents in the rat brainstem , 1998, The Journal of physiology.

[79]  I. Forsythe,et al.  Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem , 1998, The Journal of physiology.

[80]  G. Wang,et al.  Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. , 1998, Biochemistry.

[81]  C. Mahaffey,et al.  The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit , 1998, Nature Genetics.

[82]  K. Page,et al.  Identification of the Amino Terminus of Neuronal Ca2+ Channel α1 Subunits α1B and α1E as an Essential Determinant of G-Protein Modulation , 1998, The Journal of Neuroscience.

[83]  J. Nakai,et al.  Two Regions of the Ryanodine Receptor Involved in Coupling withl-Type Ca2+ Channels* , 1998, The Journal of Biological Chemistry.

[84]  J. Yates,et al.  Primary Structure and Function of an A Kinase Anchoring Protein Associated with Calcium Channels , 1998, Neuron.

[85]  N. Marrion,et al.  A novel lipid‐anchored A‐kinase Anchoring Protein facilitates cAMP‐responsive membrane events , 1998, The EMBO journal.

[86]  Margaret Barnes-Davies,et al.  Inactivation of Presynaptic Calcium Current Contributes to Synaptic Depression at a Fast Central Synapse , 1998, Neuron.

[87]  K. Deisseroth,et al.  Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons , 1998, Nature.

[88]  Jung-Ha Lee,et al.  Molecular characterization of a neuronal low-voltage-activated T-type calcium channel , 1998, Nature.

[89]  W. Catterall,et al.  Construction of a high-affinity receptor site for dihydropyridine agonists and antagonists by single amino acid substitutions in a non-L-type Ca2+ channel. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[90]  A. Hudspeth,et al.  Predominance of the alpha1D subunit in L-type voltage-gated Ca2+ channels of hair cells in the chicken's cochlea. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[91]  W. Catterall,et al.  Phosphorylation of the Synaptic Protein Interaction Site on N-type Calcium Channels Inhibits Interactions with SNARE Proteins , 1997, The Journal of Neuroscience.

[92]  E. Neher,et al.  Alteration of Ca2+ Dependence of Neurotransmitter Release by Disruption of Ca2+ Channel/Syntaxin Interaction , 1997, The Journal of Neuroscience.

[93]  M. Ladner,et al.  Differential effects of subunit interactions on protein kinase A- and C-mediated phosphorylation of L-type calcium channels. , 1997, Biochemistry.

[94]  E. Stefani,et al.  Direct interaction of Gβγ with a C-terminal Gβγ-binding domain of the Ca2+ channel α1 subunit is responsible for channel inhibition by G protein-coupled receptors , 1997 .

[95]  Denise S Walker,et al.  Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the α1A subunit of the P/Q‐type calcium channel , 1997, The EMBO journal.

[96]  M. Banks,et al.  Ca2+- and Voltage-Dependent Inactivation of Ca2+ Channels in Nerve Terminals of the Neurohypophysis , 1997, The Journal of Neuroscience.

[97]  S. Green,et al.  cAMP-Dependent Regulation of Cardiac L-Type Ca2+ Channels Requires Membrane Targeting of PKA and Phosphorylation of Channel Subunits , 1997, Neuron.

[98]  R. Kraus,et al.  β Subunit Heterogeneity in Neuronal L-type Ca2+Channels* , 1997, The Journal of Biological Chemistry.

[99]  W. Catterall,et al.  Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[100]  D. Tobi,et al.  Synaptotagmin restores kinetic properties of a syntaxin‐associated N‐type voltage sensitive calcium channel , 1997 .

[101]  W. Catterall,et al.  Identification of a 15-kDa cAMP-dependent Protein Kinase-anchoring Protein Associated with Skeletal Muscle L-type Calcium Channels* , 1997, Journal of Biological Chemistry.

[102]  W. Catterall,et al.  Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel α1A subunit , 1997 .

[103]  W. Catterall,et al.  Modulation of the Cloned Skeletal Muscle L-Type Ca2+Channel by Anchored cAMP-Dependent Protein Kinase , 1997, The Journal of Neuroscience.

[104]  K. Page,et al.  The Intracellular Loop between Domains I and II of the B-Type Calcium Channel Confers Aspects of G-Protein Sensitivity to the E-Type Calcium Channel , 1997, The Journal of Neuroscience.

[105]  D. T. Yue,et al.  G‐protein modulation of N‐type calcium channel gating current in human embryonic kidney cells (HEK 293). , 1997, The Journal of physiology.

[106]  T. Snutch,et al.  Crosstalk between G proteins and protein kinase C mediated by the calcium channel α1 subunit , 1997, Nature.

[107]  Denise S Walker,et al.  Direct binding of G-protein βλ complex to voltage-dependent calcium channels , 1997, Nature.

[108]  K. Deisseroth,et al.  CREB Phosphorylation and Dephosphorylation: A Ca2+- and Stimulus Duration–Dependent Switch for Hippocampal Gene Expression , 1996, Cell.

[109]  R. Tsien,et al.  Multiple Structural Elements in Voltage-Dependent Ca2+ Channels Support Their Inhibition by G Proteins , 1996, Neuron.

[110]  D. Pietrobon,et al.  Functional Diversity of P-Type and R-Type Calcium Channels in Rat Cerebellar Neurons , 1996, The Journal of Neuroscience.

[111]  W. Catterall,et al.  Inhibition of Neurotransmission by Peptides Containing the Synaptic Protein Interaction Site of N-Type Ca2+ Channels , 1996, Neuron.

[112]  J. Hell,et al.  Specific phosphorylation of a site in the full-length form of the alpha 1 subunit of the cardiac L-type calcium channel by adenosine 3',5'-cyclic monophosphate-dependent protein kinase. , 1996, Biochemistry.

[113]  D. Atlas,et al.  Functional interaction of syntaxin and SNAP‐25 with voltage‐sensitive L‐ and N‐type Ca2+ channels. , 1996, The EMBO journal.

[114]  H. Glossmann,et al.  Identification of PK-A phosphorylation sites in the carboxyl terminus of L-type calcium channel alpha 1 subunits. , 1996, Biochemistry.

[115]  W. Catterall,et al.  Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[116]  K. Campbell,et al.  Identification of Three Subunits of the High Affinity ω-Conotoxin MVIIC-sensitive Ca2+ Channel* , 1996, The Journal of Biological Chemistry.

[117]  P. Karczewski,et al.  In-vivo phosphorylation of the cardiac L-type calcium channel beta-subunit in response to catecholamines , 1996, Molecular and Cellular Biochemistry.

[118]  J. Hell,et al.  N-methyl-D-aspartate receptor-induced proteolytic conversion of postsynaptic class C L-type calcium channels in hippocampal neurons. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[119]  S. Ikeda Voltage-dependent modulation of N-type calcium channels by G-protein β γsubunits , 1996, Nature.

[120]  Hanh T. Nguyen,et al.  Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor , 1996, Nature.

[121]  K. Mackie,et al.  Modulation of Ca2+ channels βγ G-protein py subunits , 1996, Nature.

[122]  K. Campbell,et al.  Dual Function of the Voltage-Dependent Ca2+ Channel α2δ Subunit in Current Stimulation and Subunit Interaction , 1996, Neuron.

[123]  W. Catterall,et al.  Calcium-dependent interaction of N-type calcium channels with the synaptic core complex , 1996, Nature.

[124]  R. Tsien,et al.  Functional impact of syntaxin on gating of N-type and Q-type calcium channels , 1995, Nature.

[125]  K. Campbell,et al.  Association of Native Ca Channel Subunits with the Subunit Interaction Domain (*) , 1995, The Journal of Biological Chemistry.

[126]  W. Catterall,et al.  Sites of Selective cAMP-dependent Phosphorylation of the L-type Calcium Channel α1 Subunit from Intact Rabbit Skeletal Muscle Myotubes (*) , 1995, The Journal of Biological Chemistry.

[127]  Thomas C. Südhof,et al.  The synaptic vesicle cycle: a cascade of protein–protein interactions , 1995, Nature.

[128]  C. Lévêque,et al.  Properties of ω conotoxin MVIIC receptors associated with α1A calcium channel subunits in rat brain , 1995 .

[129]  R. Tsien,et al.  Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[130]  R. Scheller,et al.  The Biochemistry of Neurotransmitter Secretion(*) , 1995, The Journal of Biological Chemistry.

[131]  J. Luebke,et al.  Exocytotic Ca2+ channels in mammalian central neurons , 1995, Trends in Neurosciences.

[132]  Bertil Hille,et al.  Modulation of ion-channel function by G-protein-coupled receptors , 1994, Trends in Neurosciences.

[133]  W. Catterall,et al.  Identification of a syntaxin-binding site on N-Type calcium channels , 1994, Neuron.

[134]  W. Catterall,et al.  Voltage-dependent potentiation of L-type Ca2+ channels in skeletal muscle cells requires anchored cAMP-dependent protein kinase. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[135]  T. Mcdonald,et al.  Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. , 1994, Physiological reviews.

[136]  K. Campbell,et al.  Calcium channel β-subunit binds to a conserved motif in the I–II cytoplasmic linker of the α1-subunit , 1994, Nature.

[137]  E. Stefani,et al.  Modification of Ca2+ channel activity by deletions at the carboxyl terminus of the cardiac alpha 1 subunit. , 1994, The Journal of biological chemistry.

[138]  M. Adams,et al.  Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells , 1994, Nature.

[139]  B. Adams,et al.  Structure and Function of Voltage‐Dependent Calcium Channels from Muscle a , 1993, Annals of the New York Academy of Sciences.

[140]  J. Hell,et al.  Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits , 1993, The Journal of cell biology.

[141]  J. Hell,et al.  Differential phosphorylation of two size forms of the neuronal class C L-type calcium channel alpha 1 subunit. , 1993, The Journal of biological chemistry.

[142]  W. Catterall,et al.  Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase , 1993, Nature.

[143]  S. Vincent,et al.  Structure and functional expression of a member of the low voltage-activated calcium channel family. , 1993, Science.

[144]  R. Llinás,et al.  Distribution and functional significance of the P-type, voltage-dependent Ca2+ channels in the mammalian central nervous system , 1992, Trends in Neurosciences.

[145]  W. Catterall,et al.  Specific phosphorylation of a COOH-terminal site on the full-length form of the alpha 1 subunit of the skeletal muscle calcium channel by cAMP-dependent protein kinase. , 1992, The Journal of biological chemistry.

[146]  Y. Hatanaka,et al.  Structural characterization of the dihydropyridine receptor-linked calcium channel from porcine heart. , 1992, Journal of biochemistry.

[147]  M. Williams,et al.  Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. , 1992, Science.

[148]  Michael E. Adams,et al.  P-type calcium channels in rat central and peripheral neurons , 1992, Neuron.

[149]  J. Hell,et al.  Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[150]  P. Reiner,et al.  Ca2+ channels: diversity of form and function , 1992, Current Opinion in Neurobiology.

[151]  W. Stühmer,et al.  Calcium channel characteristics conferred on the sodium channel by single mutations , 1992, Nature.

[152]  S. Snyder,et al.  Purified omega-conotoxin GVIA receptor of rat brain resembles a dihydropyridine-sensitive L-type calcium channel. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[153]  K. De Jongh,et al.  Characterization of the two size forms of the alpha 1 subunit of skeletal muscle L-type calcium channels. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[154]  M. Biel,et al.  The roles of the subunits in the function of the calcium channel. , 1991, Science.

[155]  A. Brown,et al.  Normalization of current kinetics by interaction between the α1and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel , 1991, Nature.

[156]  T. Snutch,et al.  Primary structure of a calcium channel that is highly expressed in the rat cerebellum. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[157]  J. Nakai,et al.  Primary structure and functional expression from complementary DNA of a brain calcium channel , 1991, Nature.

[158]  W. Catterall Excitation-contraction coupling in vertebrate skeletal muscle: A tale of two calcium channels , 1991, Cell.

[159]  William A. Catterall,et al.  Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons , 1990, Nature.

[160]  W. Catterall,et al.  Subunits of purified calcium channels. Alpha 2 and delta are encoded by the same gene. , 1990, The Journal of biological chemistry.

[161]  B. Adams,et al.  Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling , 1990, Nature.

[162]  W. Catterall,et al.  Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina , 1990, Neuron.

[163]  K. Campbell,et al.  Primary structure of the gamma subunit of the DHP-sensitive calcium channel from skeletal muscle. , 1990, Science.

[164]  K. De Jongh,et al.  Subunits of purified calcium channels: a 212-kDa form of alpha 1 and partial amino acid sequence of a phosphorylation site of an independent beta subunit. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[165]  M. Biel,et al.  Primary structure of the beta subunit of the DHP-sensitive calcium channel from skeletal muscle. , 1989, Science.

[166]  A. Brown,et al.  Induction of calcium currents by the expression of the α1-subunit of the dihydropyridine receptor from skeletal muscle , 1989, Nature.

[167]  B. Bean Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence , 1989, Nature.

[168]  R. Llinás,et al.  Voltage‐Dependent Calcium Conductances in Mammalian Neurons , 1989 .

[169]  R. Tsien,et al.  Multiple types of neuronal calcium channels and their selective modulation , 1988, Trends in Neurosciences.

[170]  M. Hosey,et al.  Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different. , 1988, The Journal of biological chemistry.

[171]  K. Campbell,et al.  Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle , 1988, The Journal of cell biology.

[172]  K. Campbell,et al.  Sequence and expression of MRNAs encoding the α1 and α2 subunits of a DHP-sensitive calcium channel , 1988 .

[173]  F. Hofmann,et al.  The bovine cardiac receptor for calcium channel blockers is a 195-kDa protein. , 1988, European journal of biochemistry.

[174]  M. Lazdunski,et al.  Photoaffinity labelling and phosphorylation of a 165 kilodalton peptide associated with dihydropyridine and phenylalkylamine-sensitive calcium channels. , 1987, Biochemical and biophysical research communications.

[175]  W. Catterall,et al.  Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[176]  V. Flockerzi,et al.  Primary structure of the receptor for calcium channel blockers from skeletal muscle , 1987, Nature.

[177]  K. Campbell,et al.  Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. , 1987, The Journal of biological chemistry.

[178]  H. Glossmann,et al.  Photoaffinity labelling of the phenylalkylamine receptor of the skeletal muscle transverse‐tubule calcium channel , 1987, FEBS letters.

[179]  F. Hofmann,et al.  Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel , 1986, Nature.

[180]  R. Tsien,et al.  Mechanisms of calcium channel modulation by beta-adrenergic agents and dihydropyridine calcium agonists. , 1986, Journal of molecular and cellular cardiology.

[181]  W. Catterall,et al.  Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules. , 1986, Biochemistry.

[182]  H. Lux,et al.  Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick , 1986, Pflügers Archiv.

[183]  R. Tsien,et al.  Three types of neuronal calcium channel with different calcium agonist sensitivity , 1985, Nature.

[184]  W. Catterall,et al.  Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[185]  P. Kostyuk,et al.  Two types of calcium channels in the somatic membrane of new‐born rat dorsal root ganglion neurones. , 1985, The Journal of physiology.

[186]  H. Lux,et al.  A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones , 1984, Nature.

[187]  W. Catterall,et al.  Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. , 1984, Biochemistry.

[188]  F. Hofmann,et al.  Phosphorylation of purified bovine cardiac sarcolemma and potassium-stimulated calcium uptake. , 1983, European journal of biochemistry.

[189]  A. Fabiato,et al.  Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. , 1983, The American journal of physiology.

[190]  H. Reuter Calcium channel modulation by neurotransmitters, enzymes and drugs , 1983, Nature.

[191]  F. Hofmann,et al.  Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current , 1982, Nature.

[192]  R. Llinás,et al.  Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage‐dependent ionic conductances. , 1981, The Journal of physiology.

[193]  R. Llinás,et al.  Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. , 1981, The Journal of physiology.

[194]  S. Hagiwara,et al.  Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish , 1975, The Journal of general physiology.

[195]  R. Tsien Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibres. , 1973, Nature: New biology.

[196]  F. Bezanilla,et al.  Twitches in the presence of ethylene glycol bis( -aminoethyl ether)-N,N'-tetracetic acid. , 1972, Biochimica et biophysica acta.

[197]  H. Bolz,et al.  Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels , 2010, Pflügers Archiv - European Journal of Physiology.

[198]  T. Sudhof,et al.  The synaptic vesicle cycle. , 2004, Annual review of neuroscience.

[199]  K. Palczewski,et al.  Calmodulin and Ca2+-binding proteins (CaBPs): variations on a theme. , 2002, Advances in experimental medicine and biology.

[200]  S. Barnes,et al.  Calcium channels at the photoreceptor synapse. , 2002, Advances in experimental medicine and biology.

[201]  W. Catterall,et al.  Differential modulation of Ca(v)2.1 channels by calmodulin and Ca2+-binding protein 1. , 2002, Nature neuroscience.

[202]  E. Perez-Reyes,et al.  Modification of Ca 2 + Channel Activity by Deletions at the Carboxyl Terminus of the Cardiac a 1 Subunit * , 2001 .

[203]  W. Catterall Structure and regulation of voltage-gated Ca2+ channels. , 2000, Annual review of cell and developmental biology.

[204]  S. Ikeda,et al.  Voltage-dependent modulation of N-type calcium channels: role of G protein subunits. , 1999, Advances in second messenger and phosphoprotein research.

[205]  D. Tobi,et al.  N-type voltage-sensitive calcium channel interacts with syntaxin, synaptotagmin and SNAP-25 in a multiprotein complex. , 1998, Receptors & channels.

[206]  Kym M. Boycott,et al.  Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness , 1998, Nature Genetics.

[207]  K. Mackie,et al.  G-Protein b-Subunit Specificity in the Fast Membrane-Delimited Inhibition of Ca 2 1 Channels , 1998 .

[208]  N. Klugbauer,et al.  Molecular Diversity of the Calcium Channel a 2 d Subunit , 1998 .

[209]  W. Catterall,et al.  Molecular determinants of drug binding and action on L-type calcium channels. , 1997, Annual review of pharmacology and toxicology.

[210]  C. Lévêque,et al.  Properties of omega conotoxin MVIIC receptors associated with alpha 1A calcium channel subunits in rat brain. , 1995, FEBS letters.

[211]  M. Adams,et al.  Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. , 1994, Annual review of biochemistry.

[212]  K. Campbell,et al.  Purification and reconstitution of N-type calcium channel complex from rabbit brain. , 1994, Methods in enzymology.

[213]  M. Biel,et al.  Molecular basis for Ca2+ channel diversity. , 1994, Annual review of neuroscience.

[214]  S. Snyder,et al.  Erratum: Purified ω-conotoxin GVIA receptor of rat brain resembles a dihydropyridine-sensitive L-type calcium channel (Proc. Natl. Acad. Sci. USA (December 15, 1991) 88 (11095-11099)) , 1992 .

[215]  B. Adams,et al.  Molecular insights into excitation-contraction coupling. , 1990, Cold Spring Harbor symposia on quantitative biology.

[216]  T. Yamauchi,et al.  [Ca2(+)-calmodulin-dependent protein kinase II]. , 1990, Seikagaku. The Journal of Japanese Biochemical Society.

[217]  B. Bean,et al.  Classes of calcium channels in vertebrate cells. , 1989, Annual review of physiology.

[218]  R. Llinás,et al.  Voltage-dependent calcium conductances in mammalian neurons. The P channel. , 1989, Annals of the New York Academy of Sciences.

[219]  Albert T. LeungS,et al.  Structural Characterization of the 1,4-Dihydropyridine Recegtor of the Voltage-dependent Ca Channel from Rabbit Skeletal Muscle , 1987 .

[220]  R. Tsien Calcium channels in excitable cell membranes. , 1983, Annual review of physiology.

[221]  H. Reuter Properties of two inward membrane currents in the heart. , 1979, Annual review of physiology.

[222]  H. Reuter,et al.  The regulation of the calcium conductance of cardiac muscle by adrenaline. , 1977, The Journal of physiology.

[223]  Scott T. Wong,et al.  Ca 2 + / calmodulin binds to andmodulates P / Q-typecalciumchannels , 2022 .