Momentum paradox in a vortex core
暂无分享,去创建一个
Miles Padgett | Roberta Zambrini | Laura C. Thomson | M. Padgett | R. Zambrini | Stephen M. Barnett * | L. Thomson
[1] M. Padgett,et al. Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle , 2000 .
[2] K. Dholakia,et al. Orbital angular momentum of a high-order Bessel light beam , 2002 .
[3] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[4] J. P. Woerdman,et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[5] Filippus S. Roux. Optical vortex density limitation , 2003 .
[6] Stephen M. Barnett,et al. Orbital angular momentum and nonparaxial light beams , 1994 .
[7] Stephen M. Barnett,et al. Optical Angular Momentum , 2003 .
[8] Miles J. Padgett,et al. The Poynting vector in Laguerre-Gaussian laser modes , 1995 .
[9] Michael V Berry,et al. Evanescent and real waves in quantum billiards and Gaussian beams , 1994 .
[10] E. Wolf,et al. Principles of Optics (7th Ed) , 1999 .
[11] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[12] Z. Bouchal,et al. Self-reconstruction of a distorted nondiffracting beam , 1998 .
[13] Miles J. Padgett,et al. The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density , 2000 .
[14] A. Schawlow. Lasers , 2018, Acta Ophthalmologica.
[15] L. Milne‐Thomson. A Treatise on the Theory of Bessel Functions , 1945, Nature.
[16] Emil Wolf,et al. A SCALAR REPRESENTATION OF ELECTROMAGNETIC FIELDS , 1953 .
[17] Miceli,et al. Diffraction-free beams. , 1987, Physical review letters.