Momentum paradox in a vortex core

The identification of angular momentum per photon with optical vortices of charge l appears to require that the field amplitude be zero within a finite distance of the vortex. This, however, is not compatible with the known form of beams such as the Laguerre–Gaussian and Bessel beams. We resolve this paradox by analysing the propagation of a Bessel beam through a small circular aperture, showing that the resulting field has evanescent components.

[1]  M. Padgett,et al.  Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle , 2000 .

[2]  K. Dholakia,et al.  Orbital angular momentum of a high-order Bessel light beam , 2002 .

[3]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[4]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[5]  Filippus S. Roux Optical vortex density limitation , 2003 .

[6]  Stephen M. Barnett,et al.  Orbital angular momentum and nonparaxial light beams , 1994 .

[7]  Stephen M. Barnett,et al.  Optical Angular Momentum , 2003 .

[8]  Miles J. Padgett,et al.  The Poynting vector in Laguerre-Gaussian laser modes , 1995 .

[9]  Michael V Berry,et al.  Evanescent and real waves in quantum billiards and Gaussian beams , 1994 .

[10]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Z. Bouchal,et al.  Self-reconstruction of a distorted nondiffracting beam , 1998 .

[13]  Miles J. Padgett,et al.  The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density , 2000 .

[14]  A. Schawlow Lasers , 2018, Acta Ophthalmologica.

[15]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[16]  Emil Wolf,et al.  A SCALAR REPRESENTATION OF ELECTROMAGNETIC FIELDS , 1953 .

[17]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.