Discontinuous Galerkin methods for computational aerodynamics — 3D adaptive flow simulation with the DLR PADGE code

Abstract Over the last few years, the discontinuous Galerkin method (DGM) has demonstrated its excellence in accurate, higher-order numerical simulations for a wide range of applications in computational physics. However, the development of practical, computationally efficient flow solvers for industrial applications is still in the focus of active research. This paper deals with solving the Navier–Stokes equations describing the motion of three-dimensional, viscous compressible fluids. We present details of the PADGE code under development at the German Aerospace Center (DLR) that is aimed at large-scale applications in aerospace engineering. The discussion covers several advanced aspects like the solution of the Reynolds-averaged Navier–Stokes and k – ω turbulence model equations, a curved boundary representation, anisotropic mesh adaptation for reducing output error and techniques for solving the nonlinear algebraic equations. The performance of the solver is assessed for a set of test cases.

[1]  Dimitri J. Mavriplis,et al.  Adjoint-based h-p Adaptive Discontinuous Galerkin Methods for the Compressible Euler Equations , 2009 .

[2]  D. Wilcox Reassessment of the scale-determining equation for advanced turbulence models , 1988 .

[3]  Ralf Hartmann,et al.  Anisotropic mesh refinement for discontinuous Galerkin methods in two‐dimensional aerodynamic flow simulations , 2008 .

[4]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[5]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[6]  Jaap J. W. van der Vegt,et al.  Space-Time Discontinuous Galerkin Method for the Compressible Navier-Stokes , 2006 .

[7]  Li Wang,et al.  Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations , 2009, J. Comput. Phys..

[8]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[9]  George Em Karniadakis,et al.  Spectral/hp Methods for Viscous Compressible Flows on Unstructured 2D Meshes , 1998 .

[10]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[11]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[12]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[13]  I. Fejtek,et al.  Summary of code validation results for a multiple element airfoil test case , 1997 .

[14]  R. Hartmann,et al.  Error Estimation and Anisotropic Mesh Refinement for Aerodynamic Flow Simulations , 2010 .

[15]  Ewald Krämer,et al.  A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows , 2008 .

[16]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[17]  Ralf Hartmann,et al.  Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..

[18]  Dimitri J. Mavriplis,et al.  On Convergence Acceleration Techniques for Unstructured Meshes , 1998 .

[19]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[20]  Miloslav Feistauer,et al.  Mathematical and Computational Methods for Compressible Flow , 2003 .

[21]  Dimitri J. Mavriplis,et al.  High-order discontinuous Galerkin methods using an hp-multigrid approach , 2006, J. Comput. Phys..

[22]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[23]  Ralf Hartmann,et al.  An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[24]  Antti Hellsten,et al.  New two-equation turbulence model for aerodynamics applications , 2004 .

[25]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[26]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[27]  Simona Perotto,et al.  Anisotropic mesh adaption: application to computational fluid dynamics , 2005 .

[28]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Endre Süli,et al.  hp-Version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form. , 2002 .

[32]  D. Wilcox Turbulence modeling for CFD , 1993 .

[33]  Ralf Heinrich,et al.  The DLR TAU-Code: Recent Applications in Research and Industry , 2006 .

[34]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[35]  Dimitri J. Mavriplis,et al.  ICASE Report No . 98-44 On Convergence Acceleration Techniques for Unstructured Meshes , 1998 .

[36]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[37]  Andrea Crivellini,et al.  High-order discontinuous Galerkin discretization of transonic turbulent flows , 2009 .