One Loop to Rule Them All: The Ping-Pong Cycle and piRNA-Guided Silencing

The PIWI-interacting RNA (piRNA) pathway is a conserved defense mechanism that protects the genetic information of animal germ cells from the deleterious effects of molecular parasites, such as transposons. Discovered nearly a decade ago, this small RNA silencing system comprises PIWI-clade Argonaute proteins and their associated RNA-binding partners, the piRNAs. In this review, we highlight recent work that has advanced our understanding of how piRNAs preserve genome integrity across generations. We discuss the mechanism of piRNA biogenesis, give an overview of common themes as well as differences in piRNA-mediated silencing between species, and end by highlighting known and emerging functions of piRNAs.

[1]  Nicholas T. Ingolia,et al.  Reduced pachytene piRNAs and translation underlie spermiogenic arrest in Maelstrom mutant mice , 2014, The EMBO journal.

[2]  Seth D Findley,et al.  Drosophila PIWI associates with chromatin and interacts directly with HP1a. , 2007, Genes & development.

[3]  M. Siomi,et al.  Respective functions of two distinct Siwi complexes assembled during PIWI-interacting RNA biogenesis in Bombyx germ cells. , 2015, Cell reports.

[4]  Kuniaki Saito,et al.  Structure and function of Zucchini endoribonuclease in piRNA biogenesis , 2012, Nature.

[5]  D. Patel,et al.  Aub and Ago3 Are Recruited to Nuage through Two Mechanisms to Form a Ping-Pong Complex Assembled by Krimper. , 2015, Molecular cell.

[6]  K. Asai,et al.  A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila , 2009, Nature.

[7]  Kuniaki Saito,et al.  Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. , 2010, Genes & development.

[8]  A. Mahowald,et al.  Establishment of stable cell lines of Drosophila germ-line stem cells , 2006, Proceedings of the National Academy of Sciences.

[9]  Ammar S Naqvi,et al.  The Exoribonuclease Nibbler Controls 3′ End Processing of MicroRNAs in Drosophila , 2011, Current Biology.

[10]  G. Hannon,et al.  A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. , 2013, Molecular cell.

[11]  R. Sachidanandam,et al.  A systematic analysis of Drosophila TUDOR domain‐containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors , 2011, The EMBO journal.

[12]  Bo W. Han,et al.  The initial uridine of primary piRNAs does not create the tenth adenine that Is the hallmark of secondary piRNAs. , 2014, Molecular cell.

[13]  A. McCarthy,et al.  Metazoan Maelstrom is an RNA-binding protein that has evolved from an ancient nuclease active in protists , 2015, RNA.

[14]  R. Sachidanandam,et al.  An Epigenetic Role for Maternally Inherited piRNAs in Transposon Silencing , 2008, Science.

[15]  William A. Pastor,et al.  MIWI2 and MILI Have Differential Effects on piRNA Biogenesis and DNA Methylation , 2015, Cell reports.

[16]  Ravi Sachidanandam,et al.  A germline-specific class of small RNAs binds mammalian Piwi proteins , 2006, Nature.

[17]  Grzegorz Sienski,et al.  Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. , 2013, Genes & development.

[18]  A. Pélisson,et al.  Expression of the Drosophila retrovirus gypsy as ultrastructurally detectable particles in the ovaries of flies carrying a permissive flamenco allele. , 1997, The Journal of general virology.

[19]  Anthony Boureux,et al.  Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo , 2010, Nature.

[20]  G. Hannon,et al.  The Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race , 2007, Science.

[21]  Shunmin He,et al.  MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes , 2015, Cell Research.

[22]  H. Okano,et al.  Yb integrates piRNA intermediates and processing factors into perinuclear bodies to enhance piRISC assembly. , 2014, Cell reports.

[23]  G. Hannon,et al.  shutdown is a component of the Drosophila piRNA biogenesis machinery. , 2012, RNA.

[24]  Kuniaki Saito,et al.  Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' ends. , 2007, Genes & development.

[25]  Mona Singh,et al.  The Cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline , 2011, The EMBO journal.

[26]  Z. Weng,et al.  The HP1 Homolog Rhino Anchors a Nuclear Complex that Suppresses piRNA Precursor Splicing , 2014, Cell.

[27]  Fabio Mohn,et al.  The Rhino-Deadlock-Cutoff Complex Licenses Noncanonical Transcription of Dual-Strand piRNA Clusters in Drosophila , 2014, Cell.

[28]  Peng Wang,et al.  The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC , 2007, Current Biology.

[29]  T. Yasunaga,et al.  GPAT2, a mitochondrial outer membrane protein, in piRNA biogenesis in germline stem cells. , 2013, RNA.

[30]  T. Jongens,et al.  Arginine methylation of Piwi proteins, catalyzed by dPRMT5, is required for Ago3 and Aub stability , 2009, Nature Cell Biology.

[31]  C. Antoniewski,et al.  Paramutation in Drosophila linked to emergence of a piRNA-producing locus , 2012, Nature.

[32]  Kenichiro Hata,et al.  DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. , 2008, Genes & development.

[33]  Anton J. Enright,et al.  The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements , 2011, Nature.

[34]  P. Alexiou,et al.  The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing , 2015, Genes & development.

[35]  Adam P. Rosebrock,et al.  Minotaur is critical for primary piRNA biogenesis , 2013, RNA.

[36]  Ravi Sachidanandam,et al.  Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing , 2011, Nature.

[37]  Tomaž Curk,et al.  Aubergine iCLIP Reveals piRNA-Dependent Decay of mRNAs Involved in Germ Cell Development in the Early Embryo , 2015, Cell reports.

[38]  V. Corces,et al.  Gypsy transposition correlates with the production of a retroviral envelope‐like protein under the tissue‐specific control of the Drosophila flamenco gene. , 1994, The EMBO journal.

[39]  A. Wodarz,et al.  Windei, the Drosophila Homolog of mAM/MCAF1, Is an Essential Cofactor of the H3K9 Methyl Transferase dSETDB1/Eggless in Germ Line Development , 2009, PLoS genetics.

[40]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[41]  Caifu Chen,et al.  A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. , 2013, Molecular cell.

[42]  I. MacRae,et al.  Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets , 2015, eLife.

[43]  D. Marks,et al.  The small RNA profile during Drosophila melanogaster development. , 2003, Developmental cell.

[44]  Harmit S. Malik,et al.  Multiple roles for heterochromatin protein 1 genes in Drosophila. , 2009, Annual review of genetics.

[45]  Zhiping Weng,et al.  piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production , 2015, Science.

[46]  Yong Li,et al.  Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis , 2014, Cell Research.

[47]  Z. Weng,et al.  The Drosophila HP1 Homolog Rhino Is Required for Transposon Silencing and piRNA Production by Dual-Strand Clusters , 2009, Cell.

[48]  G. Hannon,et al.  Production of artificial piRNAs in flies and mice. , 2012, RNA.

[49]  Eugene Berezikov,et al.  A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish , 2007, Cell.

[50]  N. Lau,et al.  Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. , 2009, Genome research.

[51]  Sumio Sugano,et al.  A single female-specific piRNA is the primary determiner of sex in the silkworm , 2014, Nature.

[52]  Piero Carninci,et al.  Krimper Enforces an Antisense Bias on piRNA Pools by Binding AGO3 in the Drosophila Germline. , 2015, Molecular cell.

[53]  T. Kai,et al.  Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster , 2007, Proceedings of the National Academy of Sciences.

[54]  Kuniaki Saito,et al.  DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. , 2013, Genes & development.

[55]  Haruka Ozaki,et al.  Somatic Primary piRNA Biogenesis Driven by cis-Acting RNA Elements and trans-Acting Yb. , 2015, Cell reports.

[56]  G. Hannon,et al.  Multiple roles for Piwi in silencing Drosophila transposons. , 2013, Genes & development.

[57]  Nancy M Bonini,et al.  The exonuclease Nibbler regulates age-associated traits and modulates piRNA length in Drosophila , 2015, Aging Cell.

[58]  T. Kodama,et al.  Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines , 2009, The EMBO journal.

[59]  P. Gunaratne,et al.  GASZ Is Essential for Male Meiosis and Suppression of Retrotransposon Expression in the Male Germline , 2009, PLoS genetics.

[60]  Z. Weng,et al.  Collapse of Germline piRNAs in the Absence of Argonaute3 Reveals Somatic piRNAs in Flies , 2009, Cell.

[61]  Bo W. Han,et al.  Slicing and Binding by Ago3 or Aub Trigger Piwi-Bound piRNA Production by Distinct Mechanisms. , 2015, Molecular cell.

[62]  Piero Carninci,et al.  Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA , 2013, Nature Structural &Molecular Biology.

[63]  R. Sachidanandam,et al.  piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire , 2015, Genes & development.

[64]  P. Alexiou,et al.  Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis , 2012, Nature Structural &Molecular Biology.

[65]  Julius Brennecke,et al.  piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis , 2015, Science.

[66]  R. Pillai,et al.  Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries , 2014, Nucleic acids research.

[67]  G. Hannon,et al.  The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis , 2012, Nature.

[68]  R. Lehmann,et al.  piRNA Production Requires Heterochromatin Formation in Drosophila , 2011, Current Biology.

[69]  A. Aravin,et al.  Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline , 2001, Current Biology.

[70]  S. Elgin,et al.  Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line , 2011, Proceedings of the National Academy of Sciences.

[71]  R. Sachidanandam,et al.  An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila , 2010, The EMBO journal.

[72]  A. Bucheton,et al.  Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. , 1995, Genetics.

[73]  Bo W. Han,et al.  The 3′-to-5′ Exoribonuclease Nibbler Shapes the 3′ Ends of MicroRNAs Bound to Drosophila Argonaute1 , 2011, Current Biology.

[74]  H. Ruohola-Baker,et al.  Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage , 2003, Development.

[75]  Zhiping Weng,et al.  An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. , 2013, Molecular cell.

[76]  R. Sachidanandam,et al.  The MID-PIWI module of Piwi proteins specifies nucleotide- and strand-biases of piRNAs , 2014, RNA.

[77]  A. Fujiyama,et al.  MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. , 2011, Developmental cell.

[78]  R. Sachidanandam,et al.  The Cochaperone Shutdown Defines a Group of Biogenesis Factors Essential for All piRNA Populations in Drosophila , 2012, Molecular cell.

[79]  Maike A. Laussmann,et al.  RNA Clamping by Vasa Assembles a piRNA Amplifier Complex on Transposon Transcripts , 2014, Cell.

[80]  R. Lehmann,et al.  Vreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila , 2011, Development.

[81]  Vladimir Gvozdev,et al.  A Distinct Small RNA Pathway Silences Selfish Genetic Elements in the Germline , 2006, Science.

[82]  S. Desset,et al.  Transcriptional properties and splicing of the flamenco piRNA cluster , 2014, EMBO reports.

[83]  N. Lau,et al.  Characterization of the piRNA Complex from Rat Testes , 2006, Science.

[84]  Z. Weng,et al.  Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains. , 2011, Molecular cell.

[85]  Molly Hammell,et al.  piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis , 2015, Genes & development.

[86]  N. Lau,et al.  The capacity of target silencing by Drosophila PIWI and piRNAs , 2014, RNA.

[87]  S. Paik,et al.  dSETDB1 and SU(VAR)3–9 Sequentially Function during Germline-Stem Cell Differentiation in Drosophila melanogaster , 2008, PloS one.

[88]  Dominik Handler,et al.  The Genetic Makeup of the Drosophila piRNA Pathway , 2013, Molecular cell.

[89]  Kuniaki Saito,et al.  A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5' End Formation in Drosophila , 2007, Science.

[90]  Julius Brennecke,et al.  Specialized piRNA Pathways Act in Germline and Somatic Tissues of the Drosophila Ovary , 2009, Cell.

[91]  R. Sachidanandam,et al.  PIWI Slicing and RNA Elements in Precursors Instruct Directional Primary piRNA Biogenesis. , 2015, Cell reports.

[92]  S. Rafii,et al.  Two waves of de novo methylation during mouse germ cell development , 2014, Genes & development.

[93]  C. Antoniewski,et al.  tRNA processing defects induce replication stress and Chk2‐dependent disruption of piRNA transcription , 2015, The EMBO journal.

[94]  Zhiping Weng,et al.  Adaptation to P Element Transposon Invasion in Drosophila melanogaster , 2011, Cell.

[95]  C. Antoniewski,et al.  Paramutation in Drosophila Requires Both Nuclear and Cytoplasmic Actors of the piRNA Pathway and Induces Cis-spreading of piRNA Production , 2015, Genetics.

[96]  Oliver H. Tam,et al.  RNF17 blocks promiscuous activity of PIWI proteins in mouse testes , 2015, Genes & development.

[97]  K. Senti,et al.  Silencio/CG9754 connects the Piwi–piRNA complex to the cellular heterochromatin machinery , 2015, Genes & development.

[98]  Julius Brennecke,et al.  Transcriptional Silencing of Transposons by Piwi and Maelstrom and Its Impact on Chromatin State and Gene Expression , 2012, Cell.

[99]  Hongyu Zhao,et al.  Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline , 2013, The EMBO journal.

[100]  H. Nishimasu,et al.  Crystal Structure and Activity of the Endoribonuclease Domain of the piRNA Pathway Factor Maelstrom. , 2015, Cell reports.

[101]  C. Sander,et al.  A novel class of small RNAs bind to MILI protein in mouse testes , 2006, Nature.

[102]  G. Hannon,et al.  Panoramix enforces piRNA-dependent cotranscriptional silencing , 2015, Science.

[103]  Georgi K Marinov,et al.  Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. , 2013, Genes & development.

[104]  Ravi Sachidanandam,et al.  A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. , 2008, Molecular cell.

[105]  R. Sachidanandam,et al.  Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing , 2014, Genes & development.

[106]  R. Sachidanandam,et al.  PIWI Slicing and EXD1 Drive Biogenesis of Nuclear piRNAs from Cytosolic Targets of the Mouse piRNA Pathway , 2016, Molecular cell.

[107]  Yaoyang Zhang,et al.  Antagonistic roles of Nibbler and Hen1 in modulating piRNA 3′ ends in Drosophila , 2016, Development.

[108]  Veena S Patil,et al.  Repression of Retroelements in Drosophila Germline via piRNA Pathway by the Tudor Domain Protein Tejas , 2010, Current Biology.

[109]  N. Lau,et al.  A Broadly Conserved Pathway Generates 3′UTR-Directed Primary piRNAs , 2009, Current Biology.

[110]  Zhiping Weng,et al.  UAP56 Couples piRNA Clusters to the Perinuclear Transposon Silencing Machinery , 2012, Cell.

[111]  S. Sugano,et al.  The Bombyx ovary-derived cell line endogenously expresses PIWI/PIWI-interacting RNA complexes. , 2009, RNA.

[112]  S. Kawaoka,et al.  3' end formation of PIWI-interacting RNAs in vitro. , 2011, Molecular cell.