Modeling of stick-slip micro-drives

This paper describes substantial investigations on stick-slip micro drives. The drives are the basis for miniaturized micro- and nanohandling robots, which are usually driven by piezo-actuators. Because of the reason that stick-slip drives are strongly connected with friction characteristics of the stick-slip contact, this paper focuses on several aspects of friction and the model. After an introduction of former attempts to simulate stick-slip devices based on the so-called LuGre model, the CEIM friction model presented in this paper is based on the Elastoplastic-model. It is shown that one of the most significant phenomena, the “0-amplitude”, is covered by the original Elastoplastic-model without modifications. Furthermore, a theoretic treatment of friction characteristics is performed. The properties of the model are validated by simulations and numerous measurements. Additionally, several adaptations are presented to enhance the model’s capabilities. However, friction is a complex matter with manifold specificities. Thus, beside theoretic treatment, the center of gravity is also on “technical” issues to deliver not only an academic contribution to theory of friction, but to establish a tool for design and optimization of practical stick-slip positioners.

[1]  Hertz On the Contact of Elastic Solids , 1882 .

[2]  Dean Karnopp,et al.  Computer simulation of stick-slip friction in mechanical dynamic systems , 1985 .

[3]  Izhak Etsion,et al.  A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces , 2004 .

[4]  S. Stramigioli,et al.  Modeling and simulating the stick–slip motion of the μWalker, a MEMS-based device for μSPAM , 2006 .

[5]  Vincent Hayward,et al.  Single state elastoplastic friction models , 2002, IEEE Trans. Autom. Control..

[6]  C. A. Lindensmith,et al.  Cryogenic Magnetostrictive Actuators: Materials and Applications , 1998 .

[7]  A. Bergander,et al.  Performance improvements for stick-slip positioners , 2003, MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717).

[8]  Wolfgang Zesch,et al.  Inertial drives for micro- and nanorobots: analytical study , 1995, Other Conferences.

[9]  J. Klafter,et al.  The nonlinear nature of friction , 2004, Nature.

[10]  Christoph Edeler Measurements and Potential Applications of Force-Control Method for Stick-Slip-Driven Nanohandling Robots , 2011 .

[11]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[12]  H. Blok,et al.  The dissipation of frictional heat , 1955 .

[13]  Jörg Wallaschek,et al.  Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillations , 2001 .

[14]  Ichiro Watanabe,et al.  Digital shaping filters for reducing machine vibration , 1992, IEEE Trans. Robotics Autom..

[15]  E. Rabinowicz,et al.  Friction and Wear of Materials , 1966 .

[16]  Sergej Fatikow,et al.  Simulation and Measurements of Stick-Slip-Microdrives for Nanorobots , 2010 .

[17]  Zhongwei Jiang,et al.  Nonlinear Hysteresis Compensation of Piezoelectric Ceramic Actuators , 1996 .

[18]  F. Heslot,et al.  Creep, stick-slip, and dry-friction dynamics: Experiments and a heuristic model. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  E. Rabinowicz The Intrinsic Variables affecting the Stick-Slip Process , 1958 .

[20]  S. Putterman,et al.  Correlation between charge transfer and stick-slip friction at a metal-insulator interface , 2000, Physical review letters.

[21]  Sergej Fatikow,et al.  Open Loop Force Control of Piezo-Actuated Stick-Slip Drives , 2011, Int. J. Intell. Mechatronics Robotics.

[22]  Kristofer S. J. Pister,et al.  Measurement of static friction in mechanical couplings of articulated microrobots , 1995, MOEMS-MEMS.

[23]  P. Dupont,et al.  Elasto-plastic friction model: contact compliance and stiction , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[24]  J A Ogilvy Numerical simulation of friction between contacting rough surfaces , 1991 .

[25]  Fathi H. Ghorbel,et al.  Nanoscale Friction Dynamic Modeling , 2009 .

[26]  Josep Samitier,et al.  From decimeter- to centimeter-sized mobile microrobots: the development of the MINIMAN system , 2001, Optics East.

[27]  Urban Simu,et al.  A review on actuation principls for few cubic millimeter sized mobile micro-robots , 2006 .

[28]  Reymond Clavel,et al.  Piezoactuators for motion control from centimeter to nanometer , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[29]  G. Mariotto,et al.  DYNAMIC BEHAVIOR OF A PIEZOWALKER, INERTIAL AND FRICTIONAL CONFIGURATIONS , 1999 .

[30]  Walter Driesen,et al.  Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle , 2008 .

[31]  Christoph Edeler Simulation and experimental evaluation of laser-structured actuators for a mobile microrobot , 2008, 2008 IEEE International Conference on Robotics and Automation.

[32]  F. Altpeter Friction modeling, identification and compensation , 1999 .

[33]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[34]  P. Dahl A Solid Friction Model , 1968 .

[35]  Raymond D. Mindlin,et al.  Compliance of elastic bodies in contact , 1949 .

[36]  F. P. Bowden,et al.  The Friction and Lubrication of Solids , 1964 .

[37]  A. Bergander,et al.  Monolithic piezoelectric actuators for miniature robotic systems , 2004 .

[38]  Stuart T. Smith,et al.  Foundations of ultraprecision mechanism design , 1992 .

[39]  J Y Peng,et al.  Modeling of Piezoelectric-Driven Stick–Slip Actuators , 2011, IEEE/ASME Transactions on Mechatronics.

[40]  Dan O. Popa,et al.  A four degree of freedom microrobot with large work volume , 2009, 2009 IEEE International Conference on Robotics and Automation.

[41]  U. Landman,et al.  Nanotribology: friction, wear and lubrication at the atomic scale , 1995, Nature.

[42]  Sylvain Martel,et al.  Fundamentals of piezoceramic actuation for micrometer and submicrometer motions for the NanoWalker robot , 2000, SPIE Optics East.

[43]  Urban Simu,et al.  Piezoelectric drive platform for cm3-sized autonomous robot, , 2004 .

[44]  Metin Sitti,et al.  An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[45]  Wolfgang Zesch,et al.  Inertial drives for micro- and nanorobots: two novel mechanisms , 1995, Other Conferences.

[46]  Jim Woodhouse,et al.  Stick–slip motion in the atomic force microscope , 1998 .

[47]  Richard Hurteau,et al.  Friction and Stick-Slip in Robots: Simulation and Experimentation , 2000 .

[48]  D. Bogy,et al.  An Elastic-Plastic Model for the Contact of Rough Surfaces , 1987 .

[49]  David Tabor,et al.  The Seizure of Metals , 1949 .

[50]  Persson Theory and simulation of sliding friction. , 1993, Physical review letters.

[51]  J. Greenwood,et al.  Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[52]  J. Dieterich Time-dependent friction and the mechanics of stick-slip , 1978 .

[53]  Warren P. Seering,et al.  Preshaping Command Inputs to Reduce System Vibration , 1990 .

[54]  F. P. Bowden,et al.  The friction of solids at very high speeds I. Metal on metal; II. Metal on diamond , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[55]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[56]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[57]  Valentin L. Popov,et al.  Kontaktmechanik und Reibung , 2010 .