Scale selection for anisotropic diffusion filter by Markov random field model

The selection of stopping time (i.e., scale) significantly affects the performance of anisotropic diffusion filter for image denoising. This paper designs a Markov random field (MRF) scale selection model, which selects scales for image segments, then the denoised image is the composition of segments at their optimal scales in the scale space. Firstly, statistics-based scale selection criteria are proposed for image segments. Then we design a scale selection energy function in the MRF framework by considering the scale coherence between neighboring segments. A segment-based noise estimation algorithm is also developed to estimate the noise statistics efficiently. Experiments show that the performance of MRF scale selection model is much better than the previous global scale selection schemes. Combined with this scale selection model, the anisotropic diffusion filter is comparable to or even outperform the state-of-the-art denoising methods in performance.

[1]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  B. N. Chatterji,et al.  Anisotropic Diffusion in Image Processing: Methods based on Physics, Statistics and Geometric Curve Evolution , 2002 .

[4]  Nebojsa Jojic,et al.  Consistent segmentation for optical flow estimation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[5]  Harry Shum,et al.  Flash Cut: Foreground Extraction with Flash and No-flash Image Pairs , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[7]  James W. Modestino,et al.  A Markov Random Field Model-Based Approach To Image Interpretation , 1989, Other Conferences.

[8]  Victor Solo,et al.  A fast automatic stopping criterion for anisotropic diffusion , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Steven W. Zucker,et al.  Local Scale Control for Edge Detection and Blur Estimation , 1996, ECCV.

[10]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[11]  Richard Szeliski,et al.  Noise Estimation from a Single Image , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[12]  Pavel Mrázek Selection of Optimal Stopping Time for Nonlinear Diffusion Filtering , 2001, Scale-Space.

[13]  Jean-Michel Jolion,et al.  Tracking Scale-Space Blobs for Video Description , 2002, IEEE Multim..

[14]  Patrick Pérez,et al.  Interactive Image Segmentation Using an Adaptive GMMRF Model , 2004, ECCV.

[15]  W. B. Collis,et al.  Training Methods for Image Noise Level Estimation on Wavelet Components , 2004, EURASIP J. Adv. Signal Process..

[16]  Jian Sun,et al.  Lazy snapping , 2004, SIGGRAPH 2004.

[17]  Petros Maragos,et al.  A cross-validatory statistical approach to scale selection for image denoising by nonlinear diffusion , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  Stan Z. Li Markov Random Field Modeling in Image Analysis , 2009, Advances in Pattern Recognition.

[19]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Martin J. Wainwright,et al.  MAP estimation via agreement on (hyper)trees: Message-passing and linear programming , 2005, ArXiv.

[21]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[22]  David Salesin,et al.  Interactive digital photomontage , 2004, SIGGRAPH 2004.

[23]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[24]  R. Ferretti,et al.  Optimal Stopping Time Formulation of Adaptive Image Filtering , 2001 .

[25]  Tony F. Chan,et al.  The digital TV filter and nonlinear denoising , 2001, IEEE Trans. Image Process..

[26]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[27]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[28]  Irfan A. Essa,et al.  Graphcut textures: image and video synthesis using graph cuts , 2003, ACM Trans. Graph..

[29]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  B. Frey,et al.  Transformation-Invariant Clustering Using the EM Algorithm , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Tony F. Chan,et al.  Total Variation Denoising and Enhancement of Color Images Based on the CB and HSV Color Models , 2001, J. Vis. Commun. Image Represent..

[33]  Yee Leung,et al.  Clustering by Scale-Space Filtering , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Eero P. Simoncelli Statistical models for images: compression, restoration and synthesis , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[35]  H. D. Cheng,et al.  Fuzzy homogeneity and scale-space approach to color image segmentation , 2003, Pattern Recognit..

[36]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[37]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[38]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[39]  David Tschumperlé,et al.  Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE's , 2006, International Journal of Computer Vision.

[40]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[41]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[42]  Fang Li,et al.  Variational denoising of partly textured images , 2009, J. Vis. Commun. Image Represent..

[43]  Joachim Weickert,et al.  Coherence-enhancing diffusion of colour images , 1999, Image Vis. Comput..

[44]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[46]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[47]  Pedro F. Felzenszwalb,et al.  Efficient belief propagation for early vision , 2004, CVPR 2004.

[48]  M. Basu,et al.  Scale space contours and localization property of a Gaussian derivative edge enhancement operator , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[49]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[50]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields , 2006, ECCV.

[51]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[52]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[53]  Edward H. Adelson,et al.  Learning Gaussian Conditional Random Fields for Low-Level Vision , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.