A maintenance centric approach to the view selection problem

The View Selection Problem is an optimization problem designed to enhance query performance through the pre-computation and storage of select views given resource constraints. Assuring the materialized views can be updated within a reasonable time frame has become a chief concern for recent models. However, these methods are crafted simply to fit a solution within a feasible range and not to minimize the resource intensive maintenance process. In this paper, we submit two novel advances in terms of model formulation and solution generation to reduce maintenance costs. Our proposed model, the Minimum-Maintenance View Selection Problem, combines previous techniques to minimize and constrain update costs. Furthermore, we define a series of maintenance time reducing principles in solution generation embodied in a constructor heuristic. The model and constructor heuristic are evaluated using an existing clinical data warehouse and state-of-the-art heuristics. Our analysis shows our model produces the lowest-cost solution relative to extant models. Also, they indicate algorithms seeded with our constructor heuristic to be superior solutions to all other methods tested.

[1]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[2]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[3]  Jeffrey F. Naughton,et al.  On the Computation of Multidimensional Aggregates , 1996, VLDB.

[4]  Erwin Pesch,et al.  Genetic Local Search in Combinatorial Optimization , 1994, Discret. Appl. Math..

[5]  Sameem Abdul Kareem,et al.  Using Genetic Algorithm to Select Materialized Views Subject to Dual Constraints , 2009, 2009 International Conference on Signal Processing Systems.

[6]  J. Mixter Fast , 2012 .

[7]  Jennifer Widom,et al.  Database Systems: The Complete Book , 2001 .

[8]  Stéphane Bressan,et al.  Introduction to Database Systems , 2005 .

[9]  Inderpal Singh Mumick,et al.  Selection of Views to Materialize Under a Maintenance Cost Constraint , 1999, ICDT.

[10]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[11]  Abraham Silberschatz,et al.  Database System Concepts , 1980 .

[12]  Jennifer Widom,et al.  Research problems in data warehousing , 1995, CIKM '95.

[13]  Minsoo Lee,et al.  Speeding Up Materialized View Selection in Data Warehouses Using a Randomized Algorithm , 2001, Int. J. Cooperative Inf. Syst..

[14]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Ramez Elmasri,et al.  Fundamentals of Database Systems , 1989 .

[16]  W. H. Inmon,et al.  Building the data warehouse (2nd ed.) , 1996 .

[17]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[18]  Jeffrey F. Naughton,et al.  Materialized View Selection for Multidimensional Datasets , 1998, VLDB.

[19]  Dexian Zhang,et al.  Optimal Genetic View Selection Algorithm Under Space Constraint , 2005 .

[20]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[21]  Elena Baralis,et al.  Materialized Views Selection in a Multidimensional Database , 1997, VLDB.

[22]  Klemens Böhm,et al.  Towards materialized view selection for distributed databases , 2009, EDBT '09.

[23]  Zohra Bellahsene,et al.  Modeling View Selection as a Constraint Satisfaction Problem , 2011, DEXA.

[24]  Stephen R. Gardner Building the data warehouse , 1998, CACM.

[25]  Jian Yang,et al.  Algorithms for Materialized View Design in Data Warehousing Environment , 1997, VLDB.

[26]  Maria E. Orlowska,et al.  Materialized view selection under the maintenance time constraint , 2001, Data Knowl. Eng..

[27]  Michael Lawrence,et al.  Multiobjective genetic algorithms for materialized view selection in OLAP data warehouses , 2006, GECCO '06.

[28]  Jeffrey D. Ullman,et al.  Implementing data cubes efficiently , 1996, SIGMOD '96.

[29]  Toby J. Teorey,et al.  Achieving scalability in OLAP materialized view selection , 2002, DOLAP '02.

[30]  H. V. Jagadish,et al.  Database Modeling and Design: Logical Design , 2011 .

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  Nick Roussopoulos,et al.  A case for dynamic view management , 2001, ACM Trans. Database Syst..

[33]  Nagwa M. El-Makky,et al.  Algorithms for selecting materialized views in a data warehouse , 2005, The 3rd ACS/IEEE International Conference onComputer Systems and Applications, 2005..

[34]  Panos Kalnis,et al.  View selection using randomized search , 2002, Data Knowl. Eng..

[35]  Xin Yao,et al.  An evolutionary approach to materialized views selection in a data warehouse environment , 2001, IEEE Trans. Syst. Man Cybern. Part C.

[36]  Serge Abiteboul,et al.  Complexity of answering queries using materialized views , 1998, PODS.

[37]  Toby J. Teorey,et al.  Storage estimation for multidimensional aggregates in OLAP , 1999, CASCON.

[38]  Julius T. Tou,et al.  Information Systems , 1973, GI Jahrestagung.

[39]  Graham Kendall,et al.  Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques , 2013 .

[40]  Sartaj Sahni,et al.  Simulated Annealing and Combinatorial Optimization , 1986, DAC 1986.

[41]  Abraham P. Punnen,et al.  A survey of very large-scale neighborhood search techniques , 2002, Discret. Appl. Math..

[42]  Pierre Hansen,et al.  Variable neighborhood search , 1997, Eur. J. Oper. Res..

[43]  Hamid Pirahesh,et al.  Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals , 1996, Data Mining and Knowledge Discovery.

[44]  C. J. Date An Introduction to Database Systems , 1975 .

[45]  Toby J. Teorey,et al.  A progressive view materialization algorithm , 1999, DOLAP '99.

[46]  Howard J. Karloff,et al.  On the complexity of the view-selection problem , 1999, PODS '99.

[48]  Martin L. Kersten,et al.  Fast, Randomized Join-Order Selection - Why Use Transformations? , 1994, VLDB.

[49]  Bela Stantic,et al.  Simulated Annealing for Materialized View Selection in Data Warehousing Environment , 2006, Databases and Applications.

[50]  Inderpal Singh Mumick,et al.  Selection of Views to Materialize in a Data Warehouse , 2005, IEEE Trans. Knowl. Data Eng..

[51]  Jeffrey F. Naughton,et al.  Storage Estimation for Multidimensional Aggregates in the Presence of Hierarchies , 1996, VLDB.

[52]  Connolly,et al.  Database Systems , 2004 .

[53]  Jiratta Phuboon-ob,et al.  Selecting Materialized Views Using Two-Phase Optimization with Multiple View Processing Plan , 2007 .

[54]  Sadek Bouroubi,et al.  Selection of views to materialize in data warehouse: A cooperative approach , 2011, Stud. Inform. Univ..

[55]  John R. Smith,et al.  Dynamic assembly of views in data cubes , 1998, PODS '98.

[56]  Ralph Kimball,et al.  The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling , 1996 .

[57]  Jian Yang,et al.  A framework for designing materialized views in data warehousing environment , 1997, Proceedings of 17th International Conference on Distributed Computing Systems.

[58]  Rada Chirkova,et al.  A formal perspective on the view selection problem , 2002, The VLDB Journal.

[59]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[60]  Jeffrey Xu Yu,et al.  What Difference Heuristics Make: Maintenance-Cost View-Selection Revisited , 2002, WAIM.

[61]  Jennifer Widom,et al.  A First Course in Database Systems , 1997 .

[62]  S. Moorhead Nursing outcomes classification (NOC) , 2000 .

[63]  Don-Lin Yang,et al.  Efficient Utilization of Materialized Views in a Data Warehouse , 2002, PAKDD.

[64]  Timos K. Sellis,et al.  Designing Data Warehouses , 1999, Data Knowl. Eng..

[65]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[66]  Nick Roussopoulos,et al.  Cubetree: organization of and bulk incremental updates on the data cube , 1997, SIGMOD '97.

[67]  Jorng-Tzong Horng,et al.  Applying evolutionary algorithms to materialized view selection in a data warehouse , 2003, Soft Comput..

[68]  Atish P. Sinha,et al.  A comparison of data warehousing methodologies , 2005, CACM.

[69]  Thomas Stützle,et al.  Estimation-Based Local Search for Stochastic Combinatorial Optimization Using Delta Evaluations: A Case Study on the Probabilistic Traveling Salesman Problem , 2008, INFORMS J. Comput..

[70]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[71]  Jian Yang,et al.  Genetic Algorithm for Materialized View Selection in Data Warehouse Environments , 1999, DaWaK.

[72]  Toby J. Teorey,et al.  A Pareto model for OLAP view size estimation , 2001, CASCON.

[73]  Cheng-Yan Kao,et al.  Materialized view selection using genetic algorithms in a data warehouse system , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[74]  Kenneth A. Ross,et al.  Materialized view maintenance and integrity constraint checking: trading space for time , 1996, SIGMOD '96.

[75]  H. V. Jagadish,et al.  Database Modeling and Design , 1998 .

[76]  N. Roussopolous The Logical Access Path Schema of a Database , 1982 .

[77]  Xin Yao,et al.  Materialized view selection as constrained evolutionary optimization , 2003, IEEE Trans. Syst. Man Cybern. Part C.

[78]  Bela Stantic,et al.  Parallel Simulated Annealing for Materialized View Selection in Data Warehousing Environments , 2008, ICA3PP.

[79]  Wen-Yang Lin,et al.  A Genetic Selection Algorithm for OLAP Data Cubes , 2003, Knowledge and Information Systems.