The olivo-cerebellar circuit as a universal motor control system

The olivo-cerebellar system is one of the central networks organizing movement coordination in vertebrates. This system consists of three main anatomical structures: the inferior olive (IO), the cerebellar nuclei, and the cerebellar cortex. Over the last four decades studies in many laboratories have contributed significantly to our understanding of the electrophysiology of IO and cerebellar neurons. However, addressing the dynamic properties of olivo-cerebellar network requires information beyond the limits attainable using single cell recordings. Research at the neuronal network level is presently being implemented in order to determine the spatiotemporal activity profiles of ensemble neuronal activity using optical imaging of voltage-sensitive dye signals. We summarize here results of such type of study using the in vitro IO slices. The dynamic characteristic of the system is addressed using the imaging results as well as mathematical modeling of the network, as a heuristic tool. A computer-based control system based on such biological findings is outlined.

[1]  A. J. Bower,et al.  Changes in the numbers of neurons and astrocytes during the postnatal development of the rat inferior olive , 1999, The Journal of comparative neurology.

[2]  R. Llinás,et al.  The isochronic band hypothesis and climbing fibre regulation of motricity: an experimental study , 2001, The European journal of neuroscience.

[3]  R. Llinás,et al.  The Functional Organization of the Olivo‐Cerebellar System as Examined by Multiple Purkinje Cell Recordings , 1989, The European journal of neuroscience.

[4]  Vladimir I. Nekorkin,et al.  Modeling inferior olive neuron dynamics , 2002, Neural Networks.

[5]  A. Bleasel,et al.  Development and properties of spontaneous oscillations of the membrane potential in inferior olivary neurons in the rat. , 1992, Brain research. Developmental brain research.

[6]  J. Bower,et al.  Multiple Purkinje Cell Recording in Rodent Cerebellar Cortex , 1989, The European journal of neuroscience.

[7]  R. Llinás,et al.  Electrophysiology of guinea‐pig cerebellar nuclear cells in the in vitro brain stem‐cerebellar preparation. , 1988, The Journal of physiology.

[8]  I. Lampl,et al.  Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism , 1997, Neuroscience.

[9]  V B Kazantsev,et al.  Olivo-cerebellar cluster-based universal control system , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[11]  R. Llinás,et al.  Experimentally determined chaotic phase synchronization in a neuronal system. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Llinás,et al.  GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. , 1996, Journal of neurophysiology.

[13]  D. Armstrong,et al.  A quantitative study of the purkinje cells in the cerebellum of the albino rat , 1970, The Journal of comparative neurology.

[14]  C. Bell,et al.  Relations among climbing fiber responses of nearby Purkinje Cells. , 1972, Journal of neurophysiology.

[15]  Rodolfo R. Llinás,et al.  A New Approach to the Analysis of Multidimensional Neuronal Activity: Markov Random Fields , 1997, Neural Networks.

[16]  W. T. Thach Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. , 1968, Journal of neurophysiology.

[17]  J. Voogd,et al.  Cerebellar Influence on Olivary Excitability in the Cat , 1995, The European journal of neuroscience.

[18]  E. J. Lang,et al.  GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity. , 2002, Journal of neurophysiology.

[19]  R. Llinás,et al.  Electrotonic coupling between neurons in cat inferior olive. , 1974, Journal of neurophysiology.

[20]  R. Llinás,et al.  Patterns of Spontaneous Purkinje Cell Complex Spike Activity in the Awake Rat , 1999, The Journal of Neuroscience.

[21]  K. Doya,et al.  Electrophysiological properties of inferior olive neurons: A compartmental model. , 1999, Journal of neurophysiology.

[22]  M. Bennett,et al.  Electrical synapses, a personal perspective (or history) , 2000, Brain Research Reviews.

[23]  Idan Segev,et al.  Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. , 1997, Journal of neurophysiology.

[24]  J. Voogd,et al.  Mesodiencephalic and cerebellar terminals terminate upon the same dendritic spines in the glomeruli of the cat and rat inferior olive: An ultrastructural study using a combination of [3H]-leucine and wheat germ agglutinin coupled horseradish peroxidase anterograde tracing , 1990, Neuroscience.

[25]  R. Llinás,et al.  Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. , 1974, Journal of neurophysiology.

[26]  R. Llinás,et al.  Oscillatory properties of guinea‐pig inferior olivary neurones and their pharmacological modulation: an in vitro study. , 1986, The Journal of physiology.

[27]  Elena Leznik,et al.  Electrotonically Mediated Oscillatory Patterns in Neuronal Ensembles: An In Vitro Voltage-Dependent Dye-Imaging Study in the Inferior Olive , 2002, The Journal of Neuroscience.

[28]  C. Sotelo,et al.  Localization of glutamic‐acid‐decarboxylase‐immunoreactive axon terminals in the inferior olive of the rat, with special emphasis on anatomical relations between GABAergic synapses and dendrodendritic gap junctions , 1986, The Journal of comparative neurology.

[29]  R. Llinás,et al.  Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage‐dependent ionic conductances. , 1981, The Journal of physiology.

[30]  Robert E. Foster,et al.  Oscillatory behavior in inferior olive neurons: Mechanism, modulation, cell aggregates , 1986, Brain Research Bulletin.

[31]  T. Ebner,et al.  Use of voltage-sensitive dyes and optical recordings in the central nervous system , 1995, Progress in Neurobiology.

[32]  D. McCormick,et al.  Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). , 1997, Journal of neurophysiology.

[33]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[34]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  E. Mugnaini,et al.  The GABAergic cerebello-olivary projection in the rat , 2005, Anatomy and Embryology.

[36]  R. Llinás,et al.  Morphological Correlates of Bilateral Synchrony in the Rat Cerebellar Cortex , 1996, The Journal of Neuroscience.

[37]  J. Eccles,et al.  The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum , 1966, The Journal of physiology.

[38]  R Llinás,et al.  Bilaterally synchronous complex spike Purkinje cell activity in the mammalian cerebellum , 2001, The European journal of neuroscience.

[39]  R. Llinás,et al.  Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. , 1981, The Journal of physiology.

[40]  V. Chan‐Palay,et al.  Afferents to the cerebellar lateral nucleus. Evidence from retrograde transport of horseradish peroxidase after pressure injections through micropipettes , 1976, The Journal of comparative neurology.

[41]  W. Crill Unitary multiple-spiked responses in cat inferior olive nucleus. , 1970, Journal of neurophysiology.

[42]  R. Llinás,et al.  Eighteenth Bowditch lecture. Motor aspects of cerebellar control. , 1974, The Physiologist.

[43]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[44]  V Makarenko Neural network with embedded oscillators. , 1994, The Biological bulletin.

[45]  J. Szentágothai,et al.  Über den Ursprung der Kletterfasern des Kleinhirns , 1959, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[46]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[47]  R Llinás,et al.  Some organizing principles for the control of movement based on olivocerebellar physiology. , 1997, Progress in brain research.

[48]  E. J. Lang,et al.  Organization of Olivocerebellar Activity in the Absence of Excitatory Glutamatergic Input , 2001, The Journal of Neuroscience.