Key rate of quantum key distribution with hashed two-way classical communication

We propose an information reconciliation protocol that uses two-way classical communication. In the case of the BB84 protocol and the six-state protocol, the key rates of the quantum key distribution (QKD) protocols that use our proposed information reconciliation protocol are higher than previously known protocols for wide range of error rates. We also clarify the relation between the proposed protocol and known QKD protocols and entanglement distillation protocols (EDPs).

[1]  R. Renner,et al.  An information-theoretic security proof for QKD protocols , 2005, quant-ph/0502064.

[2]  Imre Csiszár Linear codes for sources and source networks: Error exponents, universal coding , 1982, IEEE Trans. Inf. Theory.

[3]  Hoi-Kwong Lo,et al.  Proof of security of quantum key distribution with two-way classical communications , 2001, IEEE Trans. Inf. Theory.

[4]  H. Chau Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate , 2002 .

[5]  B Kraus,et al.  Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. , 2004, Physical review letters.

[6]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[7]  Mitsuru Hamada,et al.  Reliability of Calderbank?Shor?Steane codes and security of quantum key distribution , 2004 .

[8]  H. Lo,et al.  Decoy-state quantum key distribution with two-way classical postprocessing , 2006, quant-ph/0604094.

[9]  林 正人 Quantum information : an introduction , 2006 .

[10]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[11]  H. Lo Method for decoupling error correction from privacy amplification , 2002, quant-ph/0201030.

[12]  Tor Helleseth,et al.  Advances in Cryptology — EUROCRYPT ’93 , 2001, Lecture Notes in Computer Science.

[13]  Hoi-Kwong Lo,et al.  Proof of unconditional security of six-state quantum key distribution scheme , 2001, Quantum Inf. Comput..

[14]  Mitsuru Hamada Reliability of Calderbank-Shor-Steane codes and security of quantum key distribution , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[15]  Michal Horodecki,et al.  Unifying Classical and Quantum Key Distillation , 2007, TCC.

[16]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[17]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[18]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[19]  R. Renner,et al.  Information-theoretic security proof for quantum-key-distribution protocols , 2005, quant-ph/0502064.

[20]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[21]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[22]  Renato Renner Symmetry implies independence , 2007 .

[23]  F. Verstraete,et al.  Interpolation of recurrence and hashing entanglement distillation protocols , 2004, quant-ph/0404111.

[24]  R. Renner Symmetry of large physical systems implies independence of subsystems , 2007 .

[25]  Shun Watanabe,et al.  Security of quantum key distribution protocol with two-way classical communication assisted by one-time pad encryption , 2006 .

[26]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[27]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.