Efficient preconditioner of one-sided space fractional diffusion equation

In this paper, we propose an efficient preconditioner for the linear systems arising from the one-sided space fractional diffusion equation with variable coefficients. The shifted Gr$$\ddot{\mathrm{u}}$$u¨nwald formula is employed to discretize the one-sided Riemann–Liouville fractional derivative. The matrix structure of resulting linear systems is Toeplitz-like, which is a summation of an identity matrix and a diagonal-times-nonsymmetric-Toeplitz matrix. A diagonal-times-nonsymmetric-Toeplitz preconditioner is proposed to reduce the condition number of the Toeplitz-like matrix, where the diagonal part comes from the variable coefficients and the nonsymmetric Toeplitz part comes from the Riemann–Liouville derivative. Theoretically, we show that the condition number of the preconditioned matrix is uniformly bounded by a constant independent of discretization step-sizes under certain assumptions on the coefficient function. Due to the uniformly bounded condition number, the Krylov subspace method for the preconditioned linear systems converges linearly and independently on discretization step-sizes. Numerical results are reported to show the efficiency of the proposed preconditioner and to demonstrate its superiority over other tested preconditioners.

[1]  Siu-Long Lei,et al.  Fast algorithms for high-order numerical methods for space-fractional diffusion equations , 2017, Int. J. Comput. Math..

[2]  Mark M. Meerschaert,et al.  A second-order accurate numerical method for the two-dimensional fractional diffusion equation , 2007, J. Comput. Phys..

[3]  Siu-Long Lei,et al.  A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..

[4]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[5]  Mehdi Dehghan,et al.  Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations , 2017, J. Comput. Phys..

[6]  Fanhai Zeng,et al.  Numerical Methods for Fractional Calculus , 2015 .

[7]  F. Hoog A new algorithm for solving Toeplitz systems of equations , 1987 .

[8]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[9]  Michael K. Ng,et al.  Preconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations , 2014, SIAM J. Sci. Comput..

[10]  Hans-Peter Scheffler,et al.  Governing equations and solutions of anomalous random walk limits. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Siu-Long Lei,et al.  Multilevel Circulant Preconditioner for High-Dimensional Fractional Diffusion Equations , 2016 .

[12]  Michael K. Ng,et al.  A Splitting Preconditioner for Toeplitz-Like Linear Systems Arising from Fractional Diffusion Equations , 2017, SIAM J. Matrix Anal. Appl..

[13]  Fawang Liu,et al.  The space-time fractional diffusion equation with Caputo derivatives , 2005 .

[14]  Xiao-Qing Jin,et al.  Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations , 2015 .

[15]  Stefano Serra Capizzano,et al.  Spectral analysis and structure preserving preconditioners for fractional diffusion equations , 2016, J. Comput. Phys..

[16]  Weihua Deng,et al.  A New Family of Difference Schemes for Space Fractional Advection Diffusion Equation , 2013, 1310.7671.

[17]  Minghua Chen,et al.  Fourth Order Accurate Scheme for the Space Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..

[18]  M. Ng Iterative Methods for Toeplitz Systems , 2004 .

[19]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[20]  Israel Gohberg,et al.  Circulants, displacements and decompositions of matrices , 1992 .

[21]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[22]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .