CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof

This paper presents a computational fluid dynamics study on a solar-chimney power plant with an inclined collector roof. A three-dimensional model using the RNG (Re-Normalisation Group) k−e turbulence closure is simulated. The discrete ordinates non-gray radiation model is used to implement the radiative-transfer equation. To simulate solar irradiation, the solar ray-tracing algorithm is employed. A parametric study is performed to illustrate the effect of the collector configuration on the performance of the Manzanares power plant. In this approach, the roof inclination is adjusted by increasing the outlet collector height, while the inlet collector height is fixed to the height of the collector of the Manzanares solar chimney pilot plant. The results showed that changes in the collector-roof inclination affect the convection pattern through the collector, which results in an increase in the mass flow rate of the system.

[1]  Theodor W. von Backström,et al.  Solar Chimney cycle analysis with system loss and solar collector performance. , 2000 .

[2]  W. Haaf,et al.  Solar Chimneys: Part II: Preliminary Test Results from the Manzanares Pilot Plant , 1984 .

[3]  Sandro Nizetic,et al.  Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region , 2008 .

[4]  Liu Wei,et al.  Analytical and numerical investigation of the solar chimney power plant systems , 2006 .

[5]  Oliver Kornadt,et al.  Numerical and analytical calculations of the temperature and flow field in the upwind power plant , 2004 .

[6]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[7]  Man-Hoe Kim,et al.  Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms , 2014 .

[8]  Shahla Mansouri,et al.  A comprehensive approach to design and improve a solar chimney power plant: A special case – Kerman project , 2013 .

[9]  Ruzhu Wang,et al.  Case study of solar chimney power plants in Northwestern regions of China , 2003 .

[10]  Theodor W. von Backström,et al.  Analysis of some available heat transfer coefficients applicable to solar chimney power plant collectors , 2009 .

[11]  H. D. Baehr,et al.  Wärme- und Stoffübertragung , 1994 .

[12]  Wei Liu,et al.  Numerical analysis of flow and heat transfer characteristics in solar chimney power plants with energy storage layer , 2008 .

[13]  J. Schlaich Solar Chimney: Electricity from the Sun , 1996 .

[14]  Guoliang Xu,et al.  Numerical analysis on the performance of solar chimney power plant system , 2011 .

[15]  S. A. Sherif,et al.  On a simple analytical model for solar chimneys , 1999 .

[16]  Detlev G. Kröger,et al.  Solar Chimney Power Plant Performance , 2006 .

[17]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[18]  Ramon Molina Valle,et al.  Numerical analysis of natural laminar convection in a radial solar heater , 1999 .

[19]  Salah Larbi,et al.  Thermo-hydrodynamic aspect analysis of flows in solar chimney power plants—A case study , 2010 .

[20]  Man-Hoe Kim,et al.  Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model , 2014 .

[21]  Atit Koonsrisuk,et al.  Mathematical modeling of solar chimney power plants , 2013 .

[22]  Johannes P. Pretorius,et al.  Thermoeconomic Optimization of a Solar Chimney Power Plant , 2008 .

[23]  J. Schlaich,et al.  Solar Chimneys Part I: Principle and Construction of the Pilot Plant in Manzanares , 1983 .

[24]  Atit Koonsrisuk,et al.  Dynamic similarity in solar chimney modeling , 2007 .

[25]  M. A. dos S. Bernardes,et al.  Thermal and technical analyses of solar chimneys , 2003 .

[26]  Atit Koonsrisuk,et al.  Effects of flow area changes on the potential of solar chimney power plants , 2013 .

[27]  S. A. Sherif,et al.  Experimental and theoretical performance of a demonstration solar chimney model—Part I: mathematical model development , 1998 .