Invariant classification of molecular views in electron micrographs.

Biological macromolecules can exhibit many different orientations in electron microscopical preparations. In particular in vitreous-ice-embedded specimens, the number of different views can be high. Existing techniques of analysis require the alignment of the molecular views relative to one or more reference images with cross-correlation ("matched filtering") techniques and are somewhat unsatisfactory because of the high noise level and the large number of different views in such images. We here propose a method in which first rotation-, translation- and mirror-invariant functions are derived from the large set of input images. These functions are subsequently classified automatically using multivariate statistical classification techniques. The different molecular views in the images can therewith be found without bias, provided that a statistically significant number of copies of the views are present in the data set. The basic ideas are exemplified with realistic model data.

[1]  A. Morineau,et al.  Multivariate descriptive statistical analysis , 1984 .

[2]  J Frank,et al.  Computer averaging of electron micrographs of 40S ribosomal subunits. , 1981, Science.

[3]  M. Heel,et al.  Classification of very large electron microscopical image data sets , 1989 .

[4]  Martin Steinkilberg,et al.  Eine verbesserte Drehkorrelationsmethode für die Strukturbestimmung biologischer Makromoleküle durch Mittelung elektronenmikroskopischer Bilder , 1980 .

[5]  H H Arsenault,et al.  Optical pattern recognition using circular harmonic expansion. , 1982, Applied optics.

[6]  J. Dubochet,et al.  Cryo-electron microscopy of vitrified specimens , 1988, Quarterly Reviews of Biophysics.

[7]  M. Heel,et al.  Exact filters for general geometry three dimensional reconstruction , 1986 .

[8]  J Frank,et al.  Motif detection in quantum noise-limited electron micrographs by cross-correlation. , 1977, Ultramicroscopy.

[9]  H H Arsenault,et al.  Rotation-invariant digital pattern recognition using circular harmonic expansion. , 1982, Applied optics.

[10]  R. Singleton An algorithm for computing the mixed radix fast Fourier transform , 1969 .

[11]  M. Heel,et al.  Characteristic views of E. coli and B. stearothermophilus 30S ribosomal subunits in the electron microscope. , 1985, The EMBO journal.

[12]  Marin van Heel,et al.  Multivariate statistical classification of noisy images (randomly oriented biological macromolecules) , 1984 .

[13]  H. Bartelt,et al.  Shift-invariant imaging of photon-limited data using bispectral analysis , 1985 .

[14]  Hermann Haken,et al.  Neural and Synergetic Computers , 1988 .

[15]  M van Heel,et al.  Statistical image analysis of electron micrographs of ribosomal subunits. , 1988, Methods in enzymology.

[16]  M. Heel,et al.  Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. , 1987 .

[17]  M. van Heel,et al.  Structure of mitochondrial F1-ATPase studied by electron microscopy and image processing. , 1986, Biochimica et biophysica acta.

[18]  George Harauz,et al.  Resolution criteria for three dimensional reconstruction , 1986 .

[19]  Adolf W. Lohmann Pattern Recognition Based On The Triple Correlation , 1987, Other Conferences.

[20]  Joachim Frank,et al.  Use of multivariate statistics in analysing the images of biological macromolecules , 1981 .

[21]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[22]  R A Crowther,et al.  Visualization of alpha-helices in tobacco mosaic virus by cryo-electron microscopy. , 1989, Journal of molecular biology.

[23]  H H Arsenault,et al.  Statistical performance of the circular harmonic filter for rotation-invariant pattern recognition. , 1983, Applied optics.

[24]  W. Kunath,et al.  Circular harmonic averaging of noisy single-molecule images. , 1989, Ultramicroscopy.

[25]  J.W. Goodman Operations achievable with coherent optical information processing systems , 1977, Proceedings of the IEEE.

[26]  Marin van Heel,et al.  IMAGIC - A FAST, FLEXIBLE AND FRIENDLY IMAGE-ANALYSIS SOFTWARE SYSTEM , 1981 .

[27]  M Unser,et al.  Odd men out: a quantitative objective procedure for identifying anomalous members of a set of noisy images of ostensibly identical specimens. , 1986, Ultramicroscopy.