A Next-generation Microwave Rainfall Retrieval Algorithm for use by TRMM and GPM

Passive microwave rainfall algorithms have evolved steadily from those designed for the early Electronically Scanning Microwave Radiometer (ESMR), through the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, and the Special Sensor Microwave Imager (SSM/I) instruments flying on the Defense Meteorological Satellite Program (DMSP). A number of algorithms fitting roughly three classes have emerged. These are (a) the “emission type” algorithms (e.g., Wilheit et al. 1991; Berg and Chase 1992; Chang et al. 1999) that use low-frequency channels to detect the increased radiances due to rain over radiometrically cold oceans; (b) the “scattering” algorithms (Spencer et al. 1983; Grody 1991; Ferraro and Marks 1995) that correlate rainfall to radiance depressions caused by ice scattering present in many precipitating clouds; and (c) the “multichannel inversion” type algorithms (Olson 1989; Mugnai et al. 1993; Kummerow and Giglio 1994; Smith et al. 1994; Petty 1994; Bauer et al. 2001; Kummerow et al. 2001) that seek to invert the entire radiance vector simultaneously. Among these, the Wilheit et al. (1991) and Kummerow et al. (2001) algorithms are used operationally for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) as well as the Advanced Microwave Scanning Radiometer (AMSR-E) flying on Aqua, while the Wilheit et al. (1991) and Ferraro and Marks (1995) algorithms are used with SSM/I in the Global Precipitation Climatology Project (GPCP) over ocean and land, respectively. The Bauer et al. (2001) algorithm is used at ECMWF

[1]  Peter Bauer,et al.  Over-Ocean Rainfall Retrieval from Multisensor Data of the Tropical Rainfall Measuring Mission. Part II: Algorithm Implementation , 2001 .

[2]  Christian D. Kummerow,et al.  A Passive Microwave Technique for Estimating Rainfall and Vertical Structure Information from Space. Part I: Algorithm Description , 1994 .

[3]  Christian Kummerow,et al.  A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors , 1996, IEEE Trans. Geosci. Remote. Sens..

[4]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[5]  E. A. Smith,et al.  Design of an inversion-based precipitation proflie retrieval algorithm using an explicit cloud model for initial guess microphysics , 1994 .

[6]  F. Wentz A well‐calibrated ocean algorithm for special sensor microwave / imager , 1997 .

[7]  Dong-Bin Shin,et al.  Parametric Rainfall Retrieval Algorithms for Passive Microwave Radiometers , 2003 .

[8]  Eric A. Smith,et al.  Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. II: Emission-source and generalized weighting-function properties of a time-dependent cloud-radiation model , 1993 .

[9]  Peter Bauer,et al.  Variational retrieval of rain profiles from spaceborne passive microwave radiance observations , 2003 .

[10]  W. Olson Physical retrieval of rainfall rates over the ocean by multispectral microwave radiometry: Application to tropical cyclones , 1989 .

[11]  Alfred T. C. Chang,et al.  First results of the TRMM Microwave Imager (TMI) monthly oceanic rain rate: comparison with SSM/I , 1999 .

[12]  N. Grody Classification of snow cover and precipitation using the special sensor microwave imager , 1991 .

[13]  Eric A. Smith,et al.  Bayesian estimation of precipitating cloud parameters from combined measurements of spaceborne microwave radiometer and radar , 1999, IEEE Trans. Geosci. Remote. Sens..

[14]  Toshio Iguchi,et al.  Rain profiling algorithm for TRMM precipitation radar data , 2000 .

[15]  Dong-Bin Shin,et al.  Constraining Microwave Brightness Temperatures by Radar Brightband Observations , 2003 .

[16]  Graeme L. Stephens,et al.  A Bayesian approach to microwave precipitation profile retrieval , 1995 .

[17]  K. Okamoto,et al.  Rain profiling algorithm for the TRMM precipitation radar , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[18]  Tim J. Hewison,et al.  A comparison of ocean emissivity models using the Advanced Microwave Sounding Unit, the Special Sensor Microwave Imager, the TRMM Microwave Imager, and airborne radiometer observations , 2003 .

[19]  J. Weinman,et al.  Satellite microwave radiances correlated with radar rain rates over land , 1983, Nature.

[20]  Christian D. Kummerow,et al.  On the accuracy of the Eddington approximation for radiative transfer in the microwave frequencies , 1993 .

[21]  Ye Hong,et al.  Atmospheric Latent Heating Distributions in the Tropics Derived from Satellite Passive Microwave Radiometer Measurements , 1999 .

[22]  Ziad S. Haddad,et al.  The TRMM 'Day-1' Radar/Radiometer Combined Rain-Profiling Algorithm , 1997 .

[23]  Dong-Bin Shin,et al.  The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors , 2001 .

[24]  Philip W. Rosenkranz,et al.  Atmospheric 60-GHz oxygen spectrum : new laboratory measurements and line parameters , 1992 .

[25]  Peter Bauer,et al.  Sensitivity analysis of airborne microwave retrieval of stratiform precipitation to the melting layer parameterization , 2001, IEEE Trans. Geosci. Remote. Sens..

[26]  Ralph Ferraro,et al.  The Development of SSM/I Rain-Rate Retrieval Algorithms Using Ground-Based Radar Measurements , 1995 .

[27]  Wesley Berg,et al.  Determination of Mean Rainfall from the Special Sensor Microwave/Imager (SSM/I) Using a Mixed Lognormal Distribution , 1992 .

[28]  Grant W. Petty,et al.  Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part I: Theoretical characteristics of normalized polarization and scattering indices , 1994 .

[29]  P. Bauer,et al.  Variational retrieval of temperature and humidity profiles using rain rates versus microwave brightness temperatures , 2004 .

[30]  Christian D. Kummerow,et al.  A Method for Combined PassiveActive Microwave Retrievals of Cloud and Precipitation Profiles , 1996 .

[31]  Frank S. Marzano,et al.  Error analysis of TMI rainfall estimates over ocean for variational data assimilation , 2002 .

[32]  Alfred T. C. Chang,et al.  Retrieval of Monthly Rainfall Indices from Microwave Radiometric Measurements Using Probability Distribution Functions , 1991 .

[33]  P. Bauer,et al.  A Melting-Layer Model for Passive/Active Microwave Remote Sensing Applications. Part I: Model Formulation and Comparison with Observations , 2001 .

[34]  Arnaldo Alves Cardoso,et al.  Sources of atmospheric acidity in an agricultural-industrial region of São Paulo State, Brazil , 2003 .

[35]  Peter Bauer,et al.  Including a melting layer in microwave radiative transfer simulation for clouds , 2001 .

[36]  Norman C. Grody,et al.  The potential of combining SSM/I and SSM/T2 measurements to improve the identification of snowcover and precipitation , 1995 .

[37]  Christian D. Kummerow,et al.  Rain Retrieval from TMI Brightness Temperature Measurements Using a TRMM PR-Based Database , 2006 .