Asymptotic blow-up analysis for singular Liouville type equations with applications

[1]  Changshou Lin,et al.  Estimates of the mean field equations with integer singular sources: Non-simple blowup , 2016 .

[2]  Local profile of fully bubbling solutions to $\mathrm {SU} (n+1)$ Toda systems , 2016 .

[3]  G. Tarantello Blow up analysis for a cosmic strings equation , 2015, 1506.02018.

[4]  Chiun-Chuan Chen,et al.  Mean Field Equation of Liouville Type with Singular Data: Topological Degree , 2015 .

[5]  Changshou Lin,et al.  Mean field equations, hyperelliptic curves and modular forms: I , 2015, 1502.03297.

[6]  Convergence rate, location and $\partial_z^2$ condition for fully bubbling solutions to SU(n+1) Toda Systems , 2014, 1410.7410.

[7]  On Singular Liouville Systems , 2014 .

[8]  On the Best Pinching Constant of Conformal Metrics on $\mathbb {S}^{2}$ with One and Two Conical Singularities , 2013 .

[9]  A. Malchiodi,et al.  An Improved Geometric Inequality via Vanishing Moments, with Applications to Singular Liouville Equations , 2012, 1206.0225.

[10]  Yujin Guo,et al.  Asymptotic behavior and symmetry of condensate solutions in electroweak theory , 2012 .

[11]  D. Bartolucci,et al.  On the Ambjorn-Olesen electroweak condensates , 2012 .

[12]  G. Tarantello,et al.  On a planar Liouville-type problem in the study of selfgravitating strings , 2012 .

[13]  Changshou Lin,et al.  Uniqueness and symmetry results for solutions of a mean field equation on 𝕊2 via a new bubbling phenomenon , 2011 .

[14]  A. Malchiodi,et al.  Supercritical conformal metrics on surfaces with conical singularities , 2011 .

[15]  Chiun-Chuan Chen,et al.  Mean field equations of Liouville type with singular data: Sharper estimates , 2010 .

[16]  ASYMPTOTIC BEHAVIOR OF BLOWUP SOLUTIONS FOR ELLIPTIC EQUATIONS WITH EXPONENTIAL NONLINEARITY AND SINGULAR DATA , 2008, 0810.5143.

[17]  A. Malchiodi Morse theory and a scalar field equation on compact surfaces , 2008, Advances in Differential Equations.

[18]  D. Bartolucci,et al.  Blow‐up analysis, existence and qualitative properties of solutions for the two‐dimensional Emden–Fowler equation with singular potential , 2007 .

[19]  Changshou Lin,et al.  Elliptic functions, Green functions and the mean field equations on tori , 2006, math/0608358.

[20]  G. Tarantello A quantization property for blow up solutions of singular Liouville-type equations , 2005 .

[21]  G. Tarantello A Harnack inequality for Liouville-type equations with singular sources , 2005 .

[22]  Chiun-Chuan Chen,et al.  Profile of Blow-up Solutions to Mean Field Equations with Singular Data , 2004 .

[23]  D. Bartolucci,et al.  Liouville Type Equations with Singular Data¶and Their Applications to Periodic Multivortices¶for the Electroweak Theory , 2002 .

[24]  Chiun-Chuan Chen,et al.  Sharp estimates for solutions of multi‐bubbles in compact Riemann surfaces , 2002 .

[25]  J. Prajapat,et al.  On a class of elliptic problems in R2: symmetry and uniqueness results , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[26]  Yong Yang,et al.  Solitons in Field Theory and Nonlinear Analysis , 2001 .

[27]  Yanyan Li Harnack Type Inequality: the Method of Moving Planes , 1999 .

[28]  G. Tarantello Multiple condensate solutions for the Chern–Simons–Higgs theory , 1996 .

[29]  Congming Li,et al.  QUALITATIVE PROPERTIES OF SOLUTIONS TO SOME NONLINEAR ELLIPTIC EQUATIONS IN R 2 , 1993 .

[30]  G. Wolansky On steady distributions of self-attracting clusters under friction and fluctuations , 1992 .

[31]  Emanuele Caglioti,et al.  A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description , 1992 .

[32]  Wenxiong Chen,et al.  Classification of solutions of some nonlinear elliptic equations , 1991 .

[33]  M. Troyanov Prescribing curvature on compact surfaces with conical singularities , 1991 .

[34]  Haim Brezis,et al.  Uniform estimates and blow–up behavior for solutions of −δ(u)=v(x)eu in two dimensions , 1991 .