Hydrostatic pressure effects on hydrogen entry into A514 steel with cathodic deposits

[1]  A. Volinsky,et al.  Hydrostatic pressure effects on the kinetic parameters of hydrogen evolution and permeation in Armco iron , 2017 .

[2]  A. Volinsky,et al.  Cathodic over-potential and hydrogen partial pressure coupling in hydrogen evolution reaction of marine steel under hydrostatic pressure , 2017 .

[3]  A. Volinsky,et al.  Hydrostatic pressure effects on hydrogen permeation in A514 steel during galvanostatic hydrogen charging , 2016 .

[4]  Zhiming Gao Effect of Calcareous Sediments on Hydrogen Evolution Potential of 16Mn Steel in Seawater , 2016, International Journal of Electrochemical Science.

[5]  J. Woodward,et al.  The Effect of Hydrostatic Pressure on Hydrogen Permeation and Embrittlement of Structural Steels in Seawater , 2013 .

[6]  M. Jeannin,et al.  Electrochemical scaling of stainless steel in artificial seawater: Role of experimental conditions on CaCO3 and Mg(OH)2 formation , 2013 .

[7]  R. Johnsen,et al.  Significance of Hydrogen Evolution during Cathodic Protection of Carbon Steel in Seawater , 2007 .

[8]  P. Berçot,et al.  Hydrogen permeation in iron at different temperatures , 2005 .

[9]  A. Gajek,et al.  Long-lasting hydrogen evolution on and hydrogen entry into iron in an aqueous solution , 2005 .

[10]  B. Tribollet,et al.  Characterisation of calcareous deposits by electrochemical methods: role of sulphates, calcium concentration and temperature , 2004 .

[11]  B. Tribollet,et al.  Characterization of calcareous deposits in artificial seawater by impedance techniques: 3—Deposit of CaCO3 in the presence of Mg(II) , 2003 .

[12]  B. Tribollet,et al.  Characterization of calcareous deposits in artificial sea water by impedances techniques: 2-deposit of Mg(OH)2 without CaCO3 , 2000 .

[13]  Tong-Yi Zhang,et al.  Effects of absorption and desorption on hydrogen permeation—I. Theoretical modeling and room temperature verification , 1998 .

[14]  G. Rius,et al.  Characterization of calcareous deposits in artificial sea water by impedance techniques—I. Deposit of CaCO3 without Mg(OH)2 , 1998 .

[15]  B. Tribollet,et al.  Interfacial pH measurement during the reduction of dissolved oxygen in a submerged impinging jet cell , 1997 .

[16]  J. Flis,et al.  Impedance characterization of the activation of iron surface for hydrogen entry from alkaline solution , 1996 .

[17]  S. Pyun,et al.  Theoretical approach to faradaic admittance of hydrogen absorption reaction on metal membrane electrode , 1993 .

[18]  Z. Szklarska‐Śmiałowska,et al.  An Ellipsometric Study of Surface Films Grown on Iron and Iron-Carbon Alloys in 0.05 M KOH. , 1990 .

[19]  S. Joiret,et al.  Use of Raman Spectroscopy and Rotating Split Ring Disk Electrode for Identification of Surface Layers on Iron in 1M NaOH , 1990 .

[20]  N. Sato 1989 Whitney Award Lecture: Toward a More Fundamental Understanding of Corrosion Processes , 1989 .

[21]  B. Conway,et al.  Behavior of overpotential—deposited species in Faradaic reactions—II. ac Impedance measurements on H2 evolution kinetics at activated and unactivated Pt cathodes , 1987 .

[22]  B. Conway,et al.  ac Impedance of Faradaic reactions involving electrosorbed intermediates—I. Kinetic theory , 1987 .

[23]  R. Johnsen,et al.  Influence Of Temperature And Hydrostatic Pressure On Hydrogen Diffusivity And Permeability In 13%Cr Super Martensitic Stainless Steel Under Cathodic Protection , 2010 .

[24]  G. Rørvik,et al.  Hydrogen Embrittlement from Cathodic Protection on Supermartensitic Stainless Steels û A Case History , 2004 .

[25]  A. Lasia Applications of Electrochemical Impedance Spectroscopy to Hydrogen Adsorption, Evolution and Absorption into Metals , 2002 .

[26]  T. S. Taylor,et al.  Foinaven Super Duplex Materials Cracking Investigation , 1999 .

[27]  Z. Szklarska‐Śmiałowska,et al.  An ellipsometric study of surface films grown on iron and iron-carbon alloys in 0.05 M KOH , 1990 .

[28]  R. F. Blundy,et al.  The effect of pressure on the permeation of hydrogen through steel , 1977 .

[29]  L. Nanis,et al.  Effects of Hydrostatic Pressures on Electrolytic Hydrogen in Iron , 1969 .