CS2 activation at uranium(III) siloxide ate complexes: the effect of a Lewis acidic site.

Multimetallic cooperative binding of heteroallenes provides an attractive route to their activation, but the reduction of CS(2) at heterobimetallic sites, associating an electron-rich metal with a main group Lewis acid has not been explored. Here we show that the presence of a heterometallic U, K site plays an important role in the CS(2) reduction by uranium(iii) complexes of the electron-rich and the sterically demanding tris(tert-butoxy)siloxide ligand. Specifically, the ion-pair complex [K(18c6)][U(OSi(O(t)Bu)(3))(4)], 1, leads preferentially to the reductive disproportionation of CS(2) to K(2)CS(3) and CS. The crystal structure of the thiocarbonate intermediate complex [U(OSi(O(t)Bu(3)(4) (μ(3)-κ(2):κ(2):κ(2-)CS(3))K(2)(18c6)(2)], 2, isolated from the toluene reaction mixture has been determined. In contrast, the heterobimetallic complex [U(OSi(O(t)Bu(3)(4)K], 3, promotes preferentially the reductive dimerization of CS(2) to K(2)C(2)S(4) and K(2)C(3)S(5). The [K(2)C(2)S(4)(DMSO)(3)](n), 5, and [U(OSi(O(t)Bu)(3))(4)K(2)(C(3)S(5))](n), 6, polymeric compounds were isolated from this reaction and structurally characterized.

[1]  S. Gambarelli,et al.  Multimetallic cooperativity in uranium-mediated CO₂ activation. , 2014, Journal of the American Chemical Society.

[2]  V. Mougel,et al.  Cation-mediated conversion of the state of charge in uranium arene inverted-sandwich complexes. , 2013, Chemistry.

[3]  L. Maron,et al.  Controlled thermolysis of uranium (alkoxy)siloxy complexes: a route to polymetallic complexes of low-valent uranium. , 2013, Angewandte Chemie.

[4]  P. Arnold,et al.  Thermally stable uranium dinitrogen complex with siloxide supporting ligands , 2013 .

[5]  J. Pécaut,et al.  Tuning uranium-nitrogen multiple bond formation with ancillary siloxide ligands. , 2013, Journal of the American Chemical Society.

[6]  J. Pécaut,et al.  Synthesis of electron-rich uranium(IV) complexes supported by tridentate Schiff base ligands and their multi-electron redox chemistry. , 2013, Inorganic chemistry.

[7]  Christophe Copéret,et al.  Siloxides as supporting ligands in uranium(III)-mediated small-molecule activation. , 2012, Angewandte Chemie.

[8]  A. J. Blake,et al.  Homologation and functionalization of carbon monoxide by a recyclable uranium complex , 2012, Proceedings of the National Academy of Sciences.

[9]  Marc D. Walter,et al.  A bipyridyl thorium metallocene: synthesis, structure and reactivity. , 2012, Dalton transactions.

[10]  F. Heinemann,et al.  Formation of a uranium trithiocarbonate complex via the nucleophilic addition of a sulfide-bridged uranium complex to CS2. , 2012, Inorganic chemistry.

[11]  Colin Finn,et al.  Molecular approaches to the electrochemical reduction of carbon dioxide. , 2012, Chemical communications.

[12]  B. Foxman,et al.  Activation of CO2 by a heterobimetallic Zr/Co complex. , 2011, Journal of the American Chemical Society.

[13]  Marc D. Walter,et al.  Thorium oxo and sulfido metallocenes: synthesis, structure, reactivity, and computational studies. , 2011, Journal of the American Chemical Society.

[14]  F. Heinemann,et al.  C-C bond formation through reductive coupling of CS2 to yield uranium tetrathiooxalate and ethylenetetrathiolate complexes. , 2011, Angewandte Chemie.

[15]  C. Limberg,et al.  Unprecedented binding and activation of CS2 in a dinuclear copper(I) complex. , 2011, Chemical communications.

[16]  P. Fanwick,et al.  Functionalization of carbon dioxide and carbon disulfide using a stable uranium(III) alkyl complex. , 2011, Journal of the American Chemical Society.

[17]  P. Arnold,et al.  Carbon monoxide coupling and functionalisation at a simple uranium coordination complex , 2011 .

[18]  V. Mougel,et al.  Multielectron redox reactions involving C-C coupling and cleavage in uranium Schiff base complexes. , 2010, Journal of the American Chemical Society.

[19]  Cameron Jones,et al.  Low coordinate lanthanide(II) complexes supported by bulky guanidinato and amidinato ligands. , 2010, Dalton transactions.

[20]  Marisa J. Monreal,et al.  Beyond C-H activation with uranium: a cascade of reactions mediated by a uranium dialkyl complex. , 2009, Angewandte Chemie.

[21]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[22]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[23]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[24]  P. Hitchcock,et al.  Mechanistic studies on the reductive cyclooligomerisation of CO by U(III) mixed sandwich complexes; the molecular structure of [(U(eta-C8H6{Si(i)Pr3-1,4}2)(eta-Cp*)]2(mu-eta1:eta1-C2O2). , 2008, Journal of the American Chemical Society.

[25]  Baiquan Wang,et al.  Unexpected reactions of (Me2C)(Me2Si)[(η5-C5H3)Mo(CO)3]2 with diazoalkane and carbon disulfide: Activation and cleavage of the NN bond and disproportionation of carbon disulfide , 2008 .

[26]  Jae-Hun Jeoung,et al.  Carbon Dioxide Activation at the Ni,Fe-Cluster of Anaerobic Carbon Monoxide Dehydrogenase , 2007, Science.

[27]  A. Shaver,et al.  Reactions of (η5-C5Me5)Ir(PMe3)(SH)2and (η5-C5Me5)Ir(PMe3)(SH)(H) with Thionylaniline (PhNSO) to Give Novel Iridium S3O and S2O Complexes , 2007 .

[28]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[29]  Anthony L. Spek,et al.  Journal of , 1993 .

[30]  W. Mace,et al.  Reactions of cyclomanganated complexes with carbon disulfide: routes to η2-aryldithiocarboxylate-Mn(CO)4 complexes and to the trithiocarbonate complex (μ3-CS3)2Mn4(CO)16 , 2002 .

[31]  D. Grant,et al.  Carbonates, thiocarbonates, and the corresponding monoalkyl derivatives. 1. Their preparation and isotropic (13)C NMR chemical shifts. , 2001, Inorganic chemistry.

[32]  R. Olk,et al.  The coordination chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (dmit) and isologs , 1999 .

[33]  T. Rauchfuss,et al.  A New Synthesis of Tetrathiooxalate and Its Conversion to C3S52- and C4S62- , 1998 .

[34]  Christopher C. Cummins,et al.  Four-Coordinate Molybdenum Chalcogenide Complexes Relevant to Nitrous Oxide N−N Bond Cleavage by Three-Coordinate Molybdenum(III): Synthesis, Characterization, Reactivity, and Thermochemistry , 1998 .

[35]  J. Becher,et al.  THE ORGANIC CHEMISTRY OF 1,3-DITHIOLE-2-THIONE-4,5-DITHIOLATE (DMIT) , 1995 .

[36]  K. Pandey Reactivities of carbonyl sulfide (COS), carbon disulfide (CS2) and carbon dioxide(CO2)with transition metal complexes , 1995 .

[37]  U. Müller,et al.  Ein neuer Zugang zu Tetrathiooxalaten. Die Kristallstruktur von (NEt4)2[C2S4] / A Novel Access to Tetrathiooxalates. Crystal Structure of (NEt4)2[C2S4] , 1992 .

[38]  D. L. Clark,et al.  New developments in actinide alkoxide chemistry , 1992 .

[39]  K. Klabunde,et al.  Carbon Monosulfide: A Review , 1988 .

[40]  E. Hoyer,et al.  Zur Koordinationschemie des 1,3‐Dithiol‐2‐on‐4,5‐dithiolats (dmid) – ein Vergleich mit 1,3‐Dithiol‐2‐thion‐4,5‐dithiolat (dmit). Kristall‐ und Molekülstruktur des Tetrabutylammonium‐bis(1,3‐dithiol‐2‐on‐4,5‐dithiolato)nickelat(III), (n‐C4H9)4N[Ni(dmid)2] , 1988 .

[41]  L. F. Dahl,et al.  Titanium-activated carbon-carbon bond formation by reductive head-to-head coupling of carbon disulfide: synthesis of [(.eta.5-C5H5)2Ti]2(C2S4) and comparative analysis of this electron-delocalized tetrathiolene-bridged dititanium complex with the electronically equivalent, electron-localized oxalate , 1987 .

[42]  R. Andersen,et al.  Chemistry of Trivalent Uranium Metallocenes: Electron-Transfer Reactions with Carbon Disulfide. Formation of [(RC5H4)3U]2[μ= η1, η2-CS2] , 1986 .

[43]  L. Interrante,et al.  Highly conducting charge-transfer compounds of tetrathiafulvalene and transition metal-dmit complexes , 1986 .

[44]  C. Mealli,et al.  Factors affecting the metal-promoted head-to-head dimerization of carbon disulfide, CS2 to C2S4. Synthesis, chemistry, structure, and MO analysis of [(triphos)Rh(.mu.-C2S4)Rh(triphos)](BPh4)2.CH2Cl2 , 1984 .

[45]  F. Arena,et al.  Carbon dioxide fixation: bifunctional complexes containing acidic and basic sites working as reversible carriers , 1982 .

[46]  Subhash C. Sharma,et al.  Tetrathiooxalate. Electrochemical Preparation and X-Ray Structure Determination of a Tetrathiooxalate. , 1982 .

[47]  P. Raithby,et al.  Reaction of CS2 with metal cluster carbonyls of the iron triad: synthesis and X-ray crystal structure of [Fe4(CO)12(C2S4)] , 1982 .

[48]  J. Ibers Centenary Lecture. Reactivities of carbon disulphide, carbon dioxide, and carbonyl sulphide towards some transition-metal systems , 1982 .

[49]  C. Floriani,et al.  Bifunctional activation of carbon dioxide. Synthesis and structure of a reversible carbon dioxide carrier , 1978 .

[50]  I. Butler,et al.  Activation of carbon disulphide by transition metal complexes , 1974 .