Evanescently Fed Electromagnetic Band-Gap Horn Antennas and Arrays

The design of a horn antenna based on electromagnetic band-gap structures (EBGs) and fed by evanescent fields in the containing periodic structure is presented. Such all-dielectric antennas can form compact arrays and provide a promising solution for millimeter, submillimeter, and terahertz (THz) devices. An evanescently fed EBG horn antenna design based on a woodpile structure and operating at frequencies around 110 GHz is presented, together with experimental and simulation results for an analogous scaled-up prototype antenna operating in the Ku-band. It exhibits a 9% bandwidth and an average level of maximum gain approximately equal to 14.6 dBi.

[1]  James G. Maloney,et al.  Dipole antennas used with all‐dielectric, woodpile photonic‐bandgap reflectors: Gain, field patterns, and input impedance , 1999 .

[2]  I. Ederra,et al.  Sub-Millimeter-Wave Imaging Array at 500 GHz Based on 3-D Electromagnetic-Bandgap Material , 2008, IEEE Transactions on Microwave Theory and Techniques.

[3]  Jonathan P. Dowling,et al.  Photonic Band Calculations for Woodpile Structures , 1994 .

[4]  Christian Hafner,et al.  Modeling of discontinuities in photonic crystal waveguides with the multiple multipole method. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  James G. Maloney,et al.  Antenna design with the use of photonic band‐gap materials as all‐dielectric planar reflectors , 1996 .

[6]  Ramon Gonzalo,et al.  Symmetrical Pyramidal Horn Antennas Based on EBG Structures , 2011 .

[7]  A sectoral horn antenna based on the electromagnetic band‐gap structures , 2008 .

[8]  P. Waldow,et al.  The Skin-Effect at High Frequencies , 1985 .

[9]  P. Maagt,et al.  Radiation properties of terahertz dipole antenna mounted on photonic crystal , 2001 .

[10]  Bernard Jecko,et al.  1‐D photonic bandgap resonator antenna , 2001 .

[11]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[12]  Barry C Sanders,et al.  Photonic crystal horn and array antennas. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  K.P. Esselle,et al.  Linear array of woodpile EBG sectoral horn antennas , 2006, IEEE Transactions on Antennas and Propagation.

[14]  Barry C. Sanders,et al.  High-gain 1D EBG resonator antenna , 2005 .

[15]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[16]  P. Maagt,et al.  Resonance frequencies of cavities in three-dimensional electromagnetic band gap structures , 2009 .

[17]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[18]  Barry C Sanders,et al.  Layer-by-layer photonic crystal horn antenna. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  R Gonzalo,et al.  Electromagnetic-Bandgap Waveguide for the Millimeter Range , 2010, IEEE Transactions on Microwave Theory and Techniques.

[20]  J. Joannopoulos,et al.  Photonic bound states in periodic dielectric materials. , 1991, Physical review. B, Condensed matter.

[21]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[22]  Eli Yablonovitch,et al.  Radiation properties of a planar antenna on a photonic-crystal substrate , 1993 .

[23]  Ekmel Ozbay,et al.  Exceptionally Directional Sources With Photonic-Bandgap Crystals , 2001 .

[24]  B. Martinez,et al.  A low-cost fabrication technique for symmetrical and asymmetrical layer-by-layer photonic crystals at submillimeter-wave frequencies , 2002 .

[25]  Che Ting Chan,et al.  Photonic band gaps in three dimensions: New layer-by-layer periodic structures , 1994 .

[26]  Chan,et al.  Existence of a photonic gap in periodic dielectric structures. , 1990, Physical review letters.

[27]  Bernard Jecko,et al.  An electromagnetic bandgap resonator antenna , 2002 .