High-temperature Josephson diode.

Symmetry plays a critical role in determining various properties of a material. Semiconducting p-n junction diode exemplifies the engineered skew electronic response and is at the heart of contemporary electronic circuits. The non-reciprocal charge transport in a diode arises from doping-induced breaking of inversion symmetry. Breaking of time-reversal, in addition to inversion symmetry in some superconducting systems, leads to an analogous device - the superconducting diode. Following the pioneering first demonstration of the superconducting diode effect (SDE), a plethora of new systems showing similar effects have been reported. SDE lays the foundation for realizing ultra-low dissipative circuits, while Josephson phenomena-based diode effect (JDE) can enable realization of protected qubits. However, SDE and JDE reported thus far are at low temperatures ($\sim$ 4 K or lower) and impede their adaptation to technological applications. Here we demonstrate a Josephson diode working up to 77 K using an artificial Josephson junction (AJJ) of twisted layers of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (BSCCO). The non-reciprocal response manifests as an asymmetry in the magnitude of switching currents and their distributions and appears for all twist angles. The asymmetry is induced by and tunable with a very small magnetic field applied perpendicular to the junction. We report a record asymmetry of 60 % at 20 K. We explain our results within a vortex-based scenario. Our results provide a path toward realizing superconducting quantum circuits at liquid nitrogen temperature.

[1]  F. von Oppen,et al.  Diode Effects in Current-Biased Josephson Junctions. , 2022, Physical review letters.

[2]  C. Winkelmann,et al.  Diode effect in Josephson junctions with a single magnetic atom , 2022, Nature.

[3]  C. Back,et al.  Non-reciprocity of vortex-limited critical current in conventional superconducting micro-bridges , 2022, Applied Physics Letters.

[4]  Y. Shimakawa,et al.  Field-free superconducting diode effect in noncentrosymmetric superconductor/ferromagnet multilayers , 2022, Nature Nanotechnology.

[5]  Yukio Tanaka,et al.  Theory of giant diode effect in d -wave superconductor junctions on the surface of a topological insulator , 2022, Physical Review B.

[6]  V. Krasnov,et al.  Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity , 2022, Nature Communications.

[7]  J. Moodera,et al.  Ubiquitous Superconducting Diode Effect in Superconductor Thin Films. , 2022, Physical review letters.

[8]  T. McQueen,et al.  The field-free Josephson diode in a van der Waals heterostructure , 2022, Nature.

[9]  M. Davydova,et al.  Universal Josephson diode effect , 2022, Science advances.

[10]  Yang Zhang,et al.  Josephson diode effect from Cooper pair momentum in a topological semimetal , 2021, Nature Physics.

[11]  Jiangping Hu,et al.  General Theory of Josephson Diodes , 2021, Physical Review X.

[12]  J. Hone,et al.  Zero-field superconducting diode effect in small-twist-angle trilayer graphene , 2021, Nature Physics.

[13]  Kenji Watanabe,et al.  Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2 , 2021, Nature Communications.

[14]  A. Daido,et al.  Intrinsic Superconducting Diode Effect. , 2021, Physical review letters.

[15]  L. Fu,et al.  Supercurrent diode effect and finite-momentum superconductors , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[16]  C. Marcus,et al.  Protected hybrid superconducting qubit in an array of gate-tunable Josephson interferometers , 2021, 2112.06907.

[17]  Wonjun Lee,et al.  Twisted van der Waals Josephson Junction Based on a High-Tc Superconductor. , 2021, Nano letters.

[18]  M. Manfra,et al.  Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions , 2021, Nature Nanotechnology.

[19]  Y. Shin,et al.  Magnetic Proximity-Induced Superconducting Diode Effect and Infinite Magnetoresistance in van der Waals Heterostructure , 2021, 2111.05627.

[20]  K. T. Law,et al.  Magnetic Josephson Junctions and Superconducting Diodes in Magic Angle Twisted Bilayer Graphene , 2021, 2110.01067.

[21]  P. Kim,et al.  Emergent Interfacial Superconductivity between Twisted Cuprate Superconductors , 2021, 2108.13455.

[22]  W. Kwok,et al.  Superconducting diode effect via conformal-mapped nanoholes , 2021, Nature Communications.

[23]  A. Damascelli,et al.  High-temperature topological superconductivity in twisted double-layer copper oxides , 2020, Nature Physics.

[24]  N. Nagaosa,et al.  Theory of the nonreciprocal Josephson effect , 2020, Physical Review B.

[25]  Qinghua Zhang,et al.  Presence of s -Wave Pairing in Josephson Junctions Made of Twisted Ultrathin Bi2Sr2CaCu2O8+x Flakes , 2019, Physical Review X.

[26]  S. Haigh,et al.  Nonreciprocal superconducting NbSe2 antenna , 2020, Nature Communications.

[27]  T. Ono,et al.  Observation of superconducting diode effect , 2020, Nature.

[28]  C. Marcus,et al.  A Parity-Protected Superconductor-Semiconductor Qubit , 2020, 2004.03975.

[29]  M. Deshmukh,et al.  On‐Demand Local Modification of High‐Tc Superconductivity in Few Unit‐Cell Thick Bi2Sr2CaCu2O8+δ , 2020, Advanced materials.

[30]  Yuanbo Zhang,et al.  High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ , 2019, Nature.

[31]  P. Kim,et al.  Sign-Reversing Hall Effect in Atomically Thin High-Temperature Bi_{2.1}Sr_{1.9}CaCu_{2.0}O_{8+δ} Superconductors. , 2018, Physical Review Letters.

[32]  G. Gu,et al.  Directly visualizing the sign change of d-wave superconducting gap in Bi2Sr2CaCu2O8+δ by phase-referenced quasiparticle interference , 2018, Nature Communications.

[33]  Y. Tokura,et al.  Nonreciprocal responses from non-centrosymmetric quantum materials , 2018, Nature Communications.

[34]  K. Jiang,et al.  Superconductor-Insulator Transitions in Exfoliated Bi2Sr2CaCu2O8+δ Flakes. , 2018, Nano letters.

[35]  A. Sivakov,et al.  Spatial characterization of the edge barrier in wide superconducting films , 2018, 2209.14080.

[36]  K. T. Law,et al.  Asymmetric Josephson effect in inversion symmetry breaking topological materials , 2018, Physical Review B.

[37]  A. Shukla,et al.  Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x , 2017, Nature Communications.

[38]  N. Nagaosa,et al.  Nonreciprocal charge transport in noncentrosymmetric superconductors , 2017, Science Advances.

[39]  H. Alloul Introduction to Superconductivity , 2011 .

[40]  X. Dai,et al.  Proposed design of a Josephson diode. , 2007, Physical review letters.

[41]  F. Nori,et al.  Ratchet without spatial asymmetry for controlling the motion of magnetic flux quanta using time-asymmetric drives. , 2007, Nature materials.

[42]  F. Peeters,et al.  Superconducting rectifier based on the asymmetric surface barrier effect , 2005 .

[43]  E. Brandt Thin superconductors and SQUIDs in perpendicular magnetic field , 2005, cond-mat/0506144.

[44]  P. Monceau,et al.  c-axis transport in naturally grown Bi2Sr2CaCU2O8+δ cross-whisker junctions , 2004, cond-mat/0401488.

[45]  R. Klemm Bi2Sr2CaCu2O8+delta bicrystal c-axis twist Josephson junctions: a new phase-sensitive test of order parameter symmetry , 2002, cond-mat/0207700.

[46]  Y. Takano,et al.  d-like symmetry of the order parameter and intrinsic Josephson effects in Bi2Sr2CaCu2O8¿d cross-whisker junctions , 2002 .

[47]  A. Grigorenko,et al.  A one-dimensional chain state of vortex matter , 2001, Nature.

[48]  Valerii M. Vinokur,et al.  Vortices in high-temperature superconductors , 1994 .

[49]  Shen,et al.  Anomalously large gap anisotropy in the a-b plane of Bi2Sr2CaCu2O8+ delta. , 2018, Physical review letters.

[50]  Kleiner,et al.  Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. , 1992, Physical review letters.

[51]  A. Ustinov,et al.  Interaction energy of Abrikosov and Josephson vortices in a long Josephson junction , 1992 .

[52]  M. Fukutomi,et al.  A New High-Tc Oxide Superconductor without a Rare Earth Element , 1988 .

[53]  T. Fulton,et al.  Lifetime of the zero-voltage state in Josephson tunnel junctions , 1974 .