Superthermal electrons and Bernstein waves in Jupiter's inner magnetosphere

A theoretical model of generation of banded electrostatic emissions by low density, superthermal electrons is developed for application to Jupiter's magnetosphere. The model employs a power law form for the energy dependence and a loss cone pitch angle distribution of the superthermals to drive convective instability of Bernstein modes. We concentrate on instability in the upper hybrid band and on lower harmonic bands below the upper hybrid frequency. A direct correspondence between spectral features of the 3/2's band and resonant superthermal electrons is found. The concept of a critical fluxj/sub perpendicular/ of resonant electrons able to provide 10 e-foldings of electric field amplification yields an explicit relation j/sub perpendicular/approx.p in terms of the background thermal electron pressure. This result is used to construct a theoretical/empirical model of thermal electron density and temperature from 6--20 R/sub J/ in the Jovian magnetosphere which suggests that the ion and electron temperatures satisfy T/sub e/

[1]  D. D. Barbosa On the convective properties of magnetospheric Bernstein Waves , 1980 .

[2]  D. Gurnett,et al.  Detection of Jovian whistler mode chorus; Implications for the Io torus aurora , 1980 .

[3]  D. Gurnett,et al.  Electrostatic waves in the Jovian magnetosphere , 1980 .

[4]  D. Gurnett,et al.  Plasma Wave Observations Near Jupiter: Initial Results from Voyager 2 , 1979, Science.

[5]  D. Gurnett,et al.  Structure and properties of Jupiter’s magnetoplasmadisc , 1979 .

[6]  G. Siscoe,et al.  Temperature anisotropy of the Jovian sulfur nebula , 1979 .

[7]  D. Gurnett,et al.  Auroral hiss observed near the Io plasma torus , 1979, Nature.

[8]  M. Ashour‐Abdalla,et al.  A comparison of intense electrostatic waves near fUHR with linear instability theory , 1979 .

[9]  D. Gurnett,et al.  Jupiter Plasma Wave Observations: An Initial Voyager 1 Overview , 1979, Science.

[10]  J. Blamont,et al.  Extreme Ultraviolet Observations from Voyager 1 Encounter with Jupiter , 1979, Science.

[11]  W. I. Axford,et al.  Low-Energy Charged Particle Environment at Jupiter: A First Look , 1979, Science.

[12]  M. Gough,et al.  Interaction of electrostatic waves with warm electrons at the geomagnetic equator , 1979, Nature.

[13]  R. McNutt,et al.  Plasma Observations Near Jupiter: Initial Results from Voyager 1 , 1979, Science.

[14]  S. Curtis,et al.  Electrostatic and electromagnetic gyroharmonic emissions due to energetic electrons in magnetospheric plasmas , 1979 .

[15]  A. C. Riddle,et al.  Voyager 1 Planetary Radio Astronomy Observations Near Jupiter , 1979, Science.

[16]  D. Gurnett,et al.  Initial Results from the ISEE-1 and-2 Plasma Wave [Article published in the Special issues: Advances in Magnetospheric Physics with GEOS- 1 and ISEE - 1 and 2. (Proceedings of the 13th ESLAB Symposium, innsbruck, 1978. - pp. 3-133)] , 1979 .

[17]  D. Gurnett,et al.  Initial results from the ISEE-1 and -2 plasma wave investigation. [magnetospheric survey] , 1979 .

[18]  M. P. Gough,et al.  Banded Electron Cyclotron Harmoic Instability - A First Comparison of Theory and Experiment (Article published in the special issues: Advances in Magnetospheric Physics with GEOS- 1 and ISEE - 1 and 2.) , 1978 .

[19]  R. Gendrin,et al.  GEOS-1 observations of electrostatic waves, and their relationship with plasma parameters , 1978 .

[20]  M. P. Gough,et al.  Banded Electron Cyclotron Harmonic Instability — A First Comparison of Theory and Experiment , 1978 .

[21]  T. Birmingham,et al.  Electrostatic emissions between electron gyroharmonics in the outer magnetosphere , 1978 .

[22]  D. Gurnett,et al.  Intense electrostatic waves near the upper hybrid resonance frequency. Progress report , 1978 .

[23]  J. Maggs Electrostatic noise generated by the auroral electron beam , 1978 .

[24]  M. Ashour‐Abdalla,et al.  Nonconvective and convective electron cyclotron harmonic instabilities , 1978 .

[25]  R. Anderson,et al.  v.l.f. emission from ring-current electrons , 1976, Nature.

[26]  F. Coroniti,et al.  Relativistic electrons and whistlers in Jupiter's magnetosphere , 1976 .

[27]  J. Maggs coherent generation of VLF hiss , 1976 .

[28]  J. Gaffey,et al.  Upper hybrid resonance in the magnetosphere , 1976 .

[29]  D. Gurnett,et al.  Electrostatic noise bands associated with the electron gyrofrequency and plasma frequency in the outer magnetosphere , 1975 .

[30]  N. A. Krall,et al.  Principles of Plasma Physics , 1973 .

[31]  M. Kaiser,et al.  Observations of noise bands associated with the upper hybrid resonance by the Imp 6 Radio Astronomy Experiment , 1973 .

[32]  J. Mccune,et al.  High-frequency electrostatic waves in the magnetosphere , 1973 .

[33]  F. Scarf,et al.  Recent studies of magnetospheric electric field emissions above the electron gyrofrequency. , 1973 .

[34]  H. Oya Conversion of Electrostatic Plasma Waves into Electromagnetic Waves: Numerical Calculation of the Dispersion Relation for All Wavelengths , 1971 .

[35]  J. H. Mcgehee,et al.  VLF electric field observations in the magnetosphere , 1970 .

[36]  J. R. McAfee Topside ray trajectories near the upper hybrid resonance , 1969 .

[37]  Charles F. Kennel,et al.  LIMIT ON STABLY TRAPPED PARTICLE FLUXES , 1966 .

[38]  H. J. Hagger,et al.  Radio ray propagation in the ionosphere , 1965 .

[39]  R. A. Dory,et al.  UNSTABLE ELECTROSTATIC PLASMA WAVES PROPAGATING PERPENDICULAR TO A MAGNETIC FIELD , 1965 .

[40]  E. Harris UNSTABLE PLASMA OSCILLATIONS IN A MAGNETIC FIELD , 1959 .

[41]  I. Bernstein,et al.  Waves in a Plasma in a Magnetic Field , 1958 .