Mining images on semantics via statistical learning

In this paper, we have proposed a novel framework to enable hierarchical image classification via statistical learning. By integrating the concept hierarchy for semantic image concept organization, a hierarchical mixture model is proposed to enable multi-level modeling of semantic image concepts and hierarchical classifier combination. Thus, learning the classifiers for the semantic image concepts at the high level of the concept hierarchy can be effectively achieved by detecting the presences of the relevant base-level atomic image concepts. To effectively learn the base-level classifiers for the atomic image concepts at the first level of the concept hierarchy, we have proposed a novel adaptive EM algorithm to achieve more effective model selection and parameter estimation. In addition, a novel penalty term is proposed to effectively eliminate the misleading effects of the outlying unlabeled images on semi-supervised classifier training. Our experimental results in a specific image domain of outdoor photos are very attractive.

[1]  Geoffrey E. Hinton,et al.  SMEM Algorithm for Mixture Models , 1998, Neural Computation.

[2]  Clement T. Yu,et al.  Using semantic contents and WordNet in image retrieval , 1997, SIGIR '97.

[3]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[4]  Latifur Khan,et al.  Image classification using neural networks and ontologies , 2002, Proceedings. 13th International Workshop on Database and Expert Systems Applications.

[5]  Chabane Djeraba,et al.  MDM/KDD2002: multimedia data mining between promises and problems , 2002, SKDD.

[6]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[7]  Aidong Zhang,et al.  Semantics-Based Image Retrieval by Region Saliency , 2002, CIVR.

[8]  Jing Huang,et al.  An automatic hierarchical image classification scheme , 1998, MULTIMEDIA '98.

[9]  Daphne Koller,et al.  Hierarchically Classifying Documents Using Very Few Words , 1997, ICML.

[10]  Aidong Zhang,et al.  SemQuery: Semantic Clustering and Querying on Heterogeneous Features for Visual Data , 2002, IEEE Trans. Knowl. Data Eng..

[11]  John R. Smith,et al.  Semantic representation: search and mining of multimedia content , 2004, KDD '04.

[12]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[13]  Edward Y. Chang,et al.  CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines , 2003, IEEE Trans. Circuits Syst. Video Technol..

[14]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Aidong Zhang,et al.  Semantic clustering and querying on heterogeneous features for visual data , 1998, MULTIMEDIA '98.

[16]  Christos Faloutsos,et al.  Automatic multimedia cross-modal correlation discovery , 2004, KDD.

[17]  Chabane Djeraba When image indexing meets knowledge discovery , 2000, MDM/KDD.

[18]  Yimin Wu,et al.  Adaptive pattern discovery for interactive multimedia retrieval , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[19]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[21]  Prabhakar Raghavan,et al.  Using Taxonomy, Discriminants, and Signatures for Navigating in Text Databases , 1997, VLDB.

[22]  Jiawei Han,et al.  MultiMediaMiner: a system prototype for multimedia data mining , 1998, SIGMOD '98.

[23]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[24]  Tom M. Mitchell,et al.  Improving Text Classification by Shrinkage in a Hierarchy of Classes , 1998, ICML.

[25]  Thomas S. Huang,et al.  Image classification using a set of labeled and unlabeled images , 2000, SPIE Optics East.

[26]  Thomas Hofmann,et al.  The Cluster-Abstraction Model: Unsupervised Learning of Topic Hierarchies from Text Data , 1999, IJCAI.

[27]  Zhongfei Zhang,et al.  A data mining approach to modeling relationships among categories in image collection , 2004, KDD '04.

[28]  Jianping Fan,et al.  Multi-level annotation of natural scenes using dominant image components and semantic concepts , 2004, MULTIMEDIA '04.

[29]  Chabane Djeraba,et al.  Multimedia Mining: A Highway to Intelligent Multimedia Documents , 2002, Multimedia Systems and Applications.

[30]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[31]  Fabio Gagliardi Cozman,et al.  Unlabeled Data Can Degrade Classification Performance of Generative Classifiers , 2002, FLAIRS.

[32]  Kristin P. Bennett,et al.  Density-based indexing for approximate nearest-neighbor queries , 1999, KDD '99.

[33]  Tommi S. Jaakkola,et al.  Information Regularization with Partially Labeled Data , 2002, NIPS.