Copula autoregressive methodology for the simulation of wind speed and direction time series

Abstract In this paper we present a methodology for synthetic generation of wind speed and direction bivariate time series based on copula functions to represent the temporal and cross-dependence structure. We explore the advantages of using this nonlinear time series method over more traditional approaches that use a transformation to normal distributions as an intermediate step. The use of copulas gives some flexibility to represent the serial variability of the real data on the simulation, besides allowing more control on the desired properties of the data. Empirical Bernstein copulas were used to consider the circular nature of wind direction. Experimental analysis and real data application prove the usability and convenience of the proposed methodology.

[1]  Z. Şen,et al.  First-order Markov chain approach to wind speed modelling , 2001 .

[2]  Christian Gourieroux,et al.  Autoregressive Gamma Processes , 2005 .

[3]  Roberto Carapellucci,et al.  A methodology for the synthetic generation of hourly wind speed time series based on some known aggregate input data , 2013 .

[4]  N. Erdem Unal,et al.  Stochastic generation of hourly mean wind speed data , 2004 .

[5]  Barry L. Nelson,et al.  Autoregressive to anything: Time-series input processes for simulation , 1996, Oper. Res. Lett..

[6]  I. Erlich,et al.  European Balancing Act , 2007, IEEE Power and Energy Magazine.

[7]  Barry L. Nelson,et al.  Numerical Methods for Fitting and Simulating Autoregressive-to-Anything Processes , 1998, INFORMS J. Comput..

[8]  Robert P. Broadwater,et al.  Current status and future advances for wind speed and power forecasting , 2014 .

[9]  C. Sim,et al.  Modelling non‐normal first‐order autoregressive time series , 1994 .

[10]  Johann Christoph Strelen Tools for dependent simulation input with copulas , 2009, SIMUTools 2009.

[11]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[12]  Nurulkamal Masseran,et al.  Markov Chain model for the stochastic behaviors of wind-direction data , 2015 .

[13]  Mohd Talib Latif,et al.  Fitting a mixture of von Mises distributions in order to model data on wind direction in Peninsular Malaysia , 2013 .

[14]  S. Satchell,et al.  THE BERNSTEIN COPULA AND ITS APPLICATIONS TO MODELING AND APPROXIMATIONS OF MULTIVARIATE DISTRIBUTIONS , 2004, Econometric Theory.

[15]  A. Shamshad,et al.  First and second order Markov chain models for synthetic generation of wind speed time series , 2005 .

[16]  Miguel A. Losada,et al.  Simulation of non-stationary wind speed and direction time series , 2016 .

[17]  Barry L. Nelson,et al.  Modeling and generating multivariate time-series input processes using a vector autoregressive technique , 2003, TOMC.

[18]  Eike Christian Brechmann,et al.  COPAR-multivariate time series modeling using the copula autoregressive model , 2012 .

[19]  James Kirtley,et al.  Pitfalls of modeling wind power using Markov chains , 2009, 2009 IEEE/PES Power Systems Conference and Exposition.

[20]  Xiaohong Chen,et al.  Estimation of Copula-Based Semiparametric Time Series Models , 2006 .

[21]  Qing Cao,et al.  Forecasting wind speed with recurrent neural networks , 2012, Eur. J. Oper. Res..

[22]  Michael P. Wiper,et al.  Non-parametric copulas for circular–linear and circular–circular data: an application to wind directions , 2013, Stochastic Environmental Research and Risk Assessment.

[23]  Huifen Chen,et al.  Initialization for NORTA: Generation of Random Vectors with Specified Marginals and Correlations , 2001, INFORMS J. Comput..

[24]  Thomas W. Yee,et al.  Vector Generalized Linear and Additive Models , 2015 .

[25]  Dorota Kurowicka,et al.  Dependence Modeling: Vine Copula Handbook , 2010 .

[26]  F. Y. Ettoumi,et al.  Statistical bivariate modelling of wind using first-order Markov chain and Weibull distribution , 2003 .

[27]  Giovanni Solari,et al.  Long-term simulation of the mean wind speed , 2011 .

[28]  C. Czado,et al.  Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence , 2010 .

[29]  Paolo Spinelli,et al.  Artificial Wind Generation and Structural Response , 1987 .

[30]  M. M. Ardehali,et al.  Very short-term wind speed prediction: A new artificial neural network–Markov chain model , 2011 .

[31]  Inderjit S. Dhillon,et al.  Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..

[32]  Henrik Madsen,et al.  A review on the young history of the wind power short-term prediction , 2008 .