Mitigating Spatial Interference in a Scalable Robot Recycling System

The initial aim of this project was to address the issue of spatial interference between robots in a robotic recycling system. The main potential bene�t of the proposed robotic recycling system is scalability. The underlying concept is that a swarm of robots process an incoming stream of materials, sorting them into homogeneous clusters of material which can then be quickly bagged and removed. When installed for a large centre, the number of robots would be correspondingly large. However, when installed for a smaller centre - such as a remote community in Newfoundland & Labrador - the number of robots, and therefore the cost of the system would be much lower. The robots themselves would constitute the system, with the additional minimal requirements of an unstructured floor space in which to operate and some input from users to help classify the input materials. A previous Harris Centre / MMSB project to explore this system made some headway, but di�culties were encountered in developing an appropriate set of robots to support further experiments. While the aim of this project was to address the issue of spatial interference, it was found that much more work was required to develop appropriate robots that could transport proxy materials (coloured pucks), classify them, navigate, and exhibit su�cient endurance for meaningful experiments. Therefore, the focus of this project switched to the development of a robot platform with these desired characteristics. It is important to note that the robots under discussion are intended for laboratory experiments using coloured pucks as proxies for real-world recyclables. A transition to robots capable of dealing with real-world conditions is far outside the project's scope. The main outcome is a robot platform called the BuPiGo which will facilitate our own experiments as well as others who are interested in swarm robotics and other distributed robotic approaches. The BuPiGo �lls a key gap in terms of the robots available to researchers. It is not intended to be a product, but an open platform that is easily extensible and makes use of widely available low-cost computing technologies such as the Raspberry Pi and Arduino platforms. It also incorporates an omnidirectional camera system to allow visual navigation between points of interest (e.g. the input point of a recycling facility and the designated output points for sorted materials). We are hopeful that this platform will now allow us to move beyond the development of experimental hardware to develop a complete model of a recycling facility using the concepts described above. This model is a �rst step towards a real-world scalable recycling facility that would allow remote communities in Newfoundland & Labrador to implement local recycling centres that would minimize transport costs and demonstrate commitment to innovation and sustainability.