Multi-Messenger observations of the Fermi-LAT blazar 4FGL J0658.6+0636 consistent with an IceCube high-energy neutrino

The detection of cosmic neutrinos has raised many new questions in astroparticle physics, among the most compelling of which is the identification of cosmic neutrino emitters. After more than a decade of IceCube operations, the most promising neutrino astrophysical association remains the very-high-energy (VHE, > 100 GeV) blazar TXS 0506 + 056. Recently, on November 14, 2020 the IceCube observatory reported the detection of a well-reconstructed high-energy neutrino event, IceCube-201114A, with a high probability of being astrophysical. Within the 90% IceCube-201114A localization region only one known 𝛾 -ray ( > 100 MeV) source is found. This is 4FGL J0658.6+0636, associated with the blazar NVSS J065844 + 063711. In these proceedings we present results from the rich multi-messenger campaign triggered by the IceCube-201114A neutrino detection, which has allowed us to collect simultaneous and quasi-simultaneous data for the 𝛾 -ray source potentially associated with the neutrino. NVSS J065844 + 063711 is a previously-known blazar with broadband properties resembling a high-synchrotron-peaked object, making it a promising TeV

[1]  E. Bernardini,et al.  Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS , 2021, Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021).

[2]  M. Landoni,et al.  ZBLLAC: A Spectroscopic Database of BL Lacertae Objects , 2020, The Astrophysical Journal Supplement Series.

[3]  S. Buson,et al.  Fermi-LAT Gamma-ray Observations of IceCube-200117A , 2020 .

[4]  F. Schinzel,et al.  Fermi Large Area Telescope Fourth Source Catalog , 2019, The Astrophysical Journal Supplement Series.

[5]  A. Coleiro,et al.  IceCube-191119A: No neutrino counterpart candidates in ANTARES search , 2019 .

[6]  B. Arsioli,et al.  The 3HSP catalogue of extreme and high-synchrotron peaked blazars , 2019, Astronomy & Astrophysics.

[7]  N. Masetti,et al.  Two New Catalogs of Blazar Candidates in the WISE Infrared Sky , 2019, The Astrophysical Journal Supplement Series.

[8]  T. B. Watson,et al.  Investigation of Two Fermi-LAT Gamma-Ray Blazars Coincident with High-energy Neutrinos Detected by IceCube , 2019, The Astrophysical Journal.

[9]  William H. Lee,et al.  Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A , 2018, Science.

[10]  I. collaboration Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert , 2018, Science.

[11]  J. DeLaunay,et al.  A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-energy Neutrino Emission and Cosmic-Ray Acceleration , 2018, The Astrophysical Journal.

[12]  B. Arsioli,et al.  Dissecting the region around IceCube-170922A: the blazar TXS 0506+056 as the first cosmic neutrino source , 2018, Monthly Notices of the Royal Astronomical Society.

[13]  C. Boisson,et al.  Leptohadronic single-zone models for the electromagnetic and neutrino emission of TXS 0506+056 , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[14]  D. Thompson,et al.  3FHL: The Third Catalog of Hard Fermi-LAT Sources , 2017, 1702.00664.

[15]  Gernot Maier,et al.  Eventdisplay: An Analysis and Reconstruction Package for Ground-based Gamma-ray Astronomy , 2017, 1708.04048.

[16]  P. Mészáros Astrophysical Sources of High-Energy Neutrinos in the IceCube Era , 2017, 1708.03577.

[17]  Paolo Giommi,et al.  The 5th edition of the Roma-BZCAT. A short presentation , 2015, 1502.07755.

[18]  The Fermi-LAT Collaboration Fermi Large Area Telescope Third Source Catalog , 2015, 1501.02003.

[19]  J. A. Hinton,et al.  A Monte Carlo template based analysis for air-Cherenkov arrays , 2014, 1403.2993.

[20]  J. P. Rodrigues,et al.  Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.

[21]  P. O. Hulth,et al.  First observation of PeV-energy neutrinos with IceCube. , 2013, Physical review letters.

[22]  The Fermi-LAT Collaboration FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG , 2010, The Astrophysical Journal Supplement Series.

[23]  Mathieu de Naurois,et al.  A high performance likelihood reconstruction of γ-rays for imaging atmospheric Cherenkov telescopes , 2009, 0907.2610.

[24]  F. T. Collaboration,et al.  VEGAS, the VERITAS Gamma-ray Analysis Suite , 2007, 0709.4233.

[25]  S. Funk,et al.  Background modelling in very-high-energy gamma-ray astronomy , 2006 .

[26]  Wolfgang A. Rolke,et al.  Limits and confidence intervals in the presence of nuisance parameters , 2004, physics/0403059.

[27]  T. Stanev,et al.  BL Lac objects in the synchrotron proton blazar model , 2002, astro-ph/0206164.

[28]  R. Protheroe,et al.  A proton synchrotron blazar model for flaring in Markarian 501 , 2000, astro-ph/0004052.