Esaim: Mathematical Modelling and Numerical Analysis Best N -term Approximation in Electronic Structure Calculations I. One-electron Reduced Density Matrix

We discuss best N -term approximation spaces for one-electron wavefunctions and reduced density matrices ρ emerging from Hartree-Fock and density functional theory. The approximation spaces for anisotropic wavelet tensor product bases have been recently characterized by Nitsche in terms of tensor product Besov spaces. We have used the norm equivalence of these spaces to weighted spaces of wavelet coefficients to proof that both and ρ are in for all with . Our proof is based on the assumption that the possess an asymptotic smoothness property at the electron-nuclear cusps.

[1]  Barry Simon,et al.  The Hartree-Fock theory for Coulomb systems , 1977 .

[2]  Cusp conditions for eigenfunctions of n -electron systems , 1981 .

[3]  R. Hill,et al.  Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method , 1985 .

[4]  Werner Kutzelnigg,et al.  Rates of convergence of the partial‐wave expansions of atomic correlation energies , 1992 .

[5]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[6]  Werner Kutzelnigg,et al.  Theory of the expansion of wave functions in a gaussian basis , 1994 .

[7]  T. Hoffmann-Ostenhof,et al.  Local properties of Coulombic wave functions , 1994 .

[8]  Dietrich Braess,et al.  Asymptotics for the approximation of wave functions by exponential sums , 1995 .

[9]  Reinhold Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression , 1998 .

[10]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[11]  R. DeVore,et al.  Hyperbolic Wavelet Approximation , 1998 .

[12]  Trygve Helgaker,et al.  Basis-set convergence of the energy in molecular Hartree–Fock calculations , 1999 .

[13]  J. Olsen,et al.  Molecular electronic-structure theory , 2000 .

[14]  M. Griebel,et al.  On the computation of the eigenproblems of hydrogen helium in strong magnetic and electric fields with the sparse grid combination technique , 2000 .

[15]  R. DeVore,et al.  Restricted Nonlinear Approximation , 2000 .

[16]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[17]  Electron Wavefunctions and Densities for Atoms , 2000, math/0005018.

[18]  Søren Fournais,et al.  The Electron Density is Smooth Away from the Nuclei , 2002 .

[19]  Wolfgang Hackbusch,et al.  Wavelet approximation of correlated wave functions. II. Hyperbolic wavelets and adaptive approximation schemes , 2002 .

[20]  T. Hoffmann-Ostenhof,et al.  On the regularity of the density of electronic wavefunctions , 2002 .

[21]  Reinhold Schneider,et al.  Wavelet approximation of correlated wave functions. I. Basics , 2002 .

[22]  Wolfgang Hackbusch Wavelet approximation of correlated wavefunctions � , 2003 .

[23]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[24]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[25]  Gregory Beylkin,et al.  Multiresolution quantum chemistry in multiwavelet bases: Hartree-Fock exchange. , 2004, The Journal of chemical physics.

[26]  G. Beylkin,et al.  Multiresolution quantum chemistry in multiwavelet bases: Analytic derivatives for Hartree-Fock and density functional theory. , 2004, The Journal of chemical physics.

[27]  Harry Yserentant,et al.  On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives , 2004, Numerische Mathematik.

[28]  Gregory Beylkin,et al.  Multiresolution quantum chemistry: basic theory and initial applications. , 2004, The Journal of chemical physics.

[29]  Wolfgang Hackbusch,et al.  Wavelet approach to quasi two-dimensional extended many-particle systems. I. Supercell Hartree-Fock method , 2005 .

[30]  Wolfgang Hackbusch,et al.  Diagrammatic multiresolution analysis for electron correlations , 2005 .

[31]  Harry Yserentant,et al.  Sparse grid spaces for the numerical solution of the electronic Schrödinger equation , 2005, Numerische Mathematik.