Mathematical modeling of boundary conditions for laser‐molecule time‐dependent Schrödinger equations and some aspects of their numerical computation—One‐dimensional case

This article deals with boundary conditions for time-dependent Schrodinger equations for molecules excited by intense and ultrashort electric fields. On the basis of Volkovwavefunctions, we propose an original boundary condition design that allows to reduce spurious reflections at the domain boundary and allows to take at least partially, plasma effects into account. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 00: 000–000, 2008

[1]  André D. Bandrauk,et al.  A numerical Maxwell-Schrödinger model for intense laser-matter interaction and propagation , 2007, Comput. Phys. Commun..

[2]  A. Couairon,et al.  Organizing multiple femtosecond filaments in air. , 2004, Physical review letters.

[3]  Claude Le Bris,et al.  Mathematical models and methods for ab initio quantum chemistry , 2000 .

[4]  Christophe Besse,et al.  Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions , 2004, Math. Comput..

[5]  Christophe Besse,et al.  Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation , 2003 .

[6]  A. Iserles On the numerical quadrature of highly‐oscillating integrals I: Fourier transforms , 2004 .

[7]  A. Scrinzi,et al.  Generation of attosecond unidirectional half-cycle pulses: Inclusion of propagation effects , 2006 .

[8]  Yousef Saad,et al.  Preconditioning techniques for the solution of the Helmholtz equation by the finite element method , 2003, Math. Comput. Simul..

[9]  The Enhancement of Efficiency of High-order Harmonic in Intense Laser Field Based on Asymptotic Boundary Conditions and Symplectic Algorithm , 2006 .

[10]  A. Bandrauk,et al.  A Maxwell–Schrödinger Model for Non-perturbative Laser-molecule Interaction and Some Methods of Numerical Computation , 2007 .

[11]  J. Périaux,et al.  Domain Decomposition Methods in Science and Engineering , 1994 .

[12]  C. cohen-tannoudji,et al.  Atom-photon interactions , 1992 .

[13]  André D. Bandrauk,et al.  Molecules in Laser Fields , 1995 .

[14]  Ivanov,et al.  Theory of high-harmonic generation by low-frequency laser fields. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[15]  Xavier Antoine,et al.  High‐frequency asymptotic analysis of a dissipative transmission problem resulting in generalized impedance boundary conditions , 2001 .

[16]  Laurent Di Menza Transparent and absorbing boundary conditions for the schrödinger equation in a bounded domain , 1997 .

[17]  Leslie Greengard,et al.  Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension , 2004 .

[18]  A. Arnold,et al.  Approximation and Fast Calculation of Non-local Boundary Conditions for the Time-dependent Schrödinger Equation , 2005 .

[19]  A. V. Popov,et al.  Implementation of transparent boundaries for numerical solution of the Schrödinger equation , 1991 .

[20]  André D. Bandrauk,et al.  Electron-nuclear dynamics of multiphoton H + 2 dissociative ionization in intense laser fields , 1998 .

[21]  Arieh Iserles,et al.  On the numerical quadrature of highly-oscillating integrals II: Irregular oscillators , 2005 .