BIOLOGICAL ACTIVITIES OF PHTHALOCYANINES‐IX. PHOTOSENSITIZATION OFV–79 CHINESE HAMSTER CELLS ANDEMT–6 MOUSE MAMMARY TUMOR BY SELECTIVELY SULFONATED ZINC PHTHALOCYANINES

Abstract— Zinc phthalocyanines sulfonated to different degrees are tested for their ability to sensitizeV–79 Chinese hamster cells andEMT–6 mouse mammary tumors to red light. In vitro, the lower sulfonated derivatives were the most active with the exception of the poorly water‐soluble monosulfonated dye. An isomeric mixture of tetrasulfonated derivatives obtained via direct sulfonation was ten times more active than the homogeneous tetrasulfo derivative prepared via the condensation of sulfophthalic acid. In vivo, the latter dye was completely inactive, whereas the remainder of the sulfonated preparations exhibited a similar structure‐activity pattern as observed with theV–79 cells in vitro. The disulfonated zinc phthalocyanine showed the best tumoricidal activity in the series and also appeared to be a more efficient photosensitizer of cell inactivation and tumor cure than the aluminum or gallium complexes as well as hematoporphyrin derivative preparations. No significant differences in skin phototoxicity were observed among the various dyes.

[1]  R. Linstead,et al.  581. Phthalocyanines and related compounds. Part XX. Further investigations on tetrabenzporphin and allied substances , 1950 .

[2]  Daryle H. Busch,et al.  Complexes Derived from Strong Field Ligands. XIX. Magnetic Properties of Transition Metal Derivatives of 4,4',4",4'''-Tetrasulfophthalocyanine , 1965 .

[3]  L. F. Fajardo,et al.  Characteristics of a serially transplanted mouse mammary tumor and its tissue-culture-adapted derivative. , 1972, Journal of the National Cancer Institute.

[4]  J Moan,et al.  Uptake of the components of hematoporphyrin derivative by cells and tumours. , 1983, Cancer letters.

[5]  R. Langlois,et al.  BIOLOGICAL ACTIVITIES OF PHTHALOCYANINES–III. PHOTOINACTIVATION OF V‐79 CHINESE HAMSTER CELLS BY TETRASULFOPHTHALOCYANINES * , 1985, Photochemistry and photobiology.

[6]  E. Ben-hur,et al.  PHOTOSENSITIZED INACTIVATION OF CHINESE HAMSTER CELLS BY PHTHALOCYANINES , 1985, Photochemistry and photobiology.

[7]  E. Ben-hur,et al.  The phthalocyanines: a new class of mammalian cells photosensitizers with a potential for cancer phototherapy. , 1985, International journal of radiation biology and related studies in physics, chemistry, and medicine.

[8]  D. Phillips,et al.  EHPnet: Doing a World of Good , 1998, Environmental Health Perspectives.

[9]  N. Brasseur,et al.  BIOLOGICAL ACTIVITIES OF PHTHALOCYANINES—IV. TYPE II SENSITIZED PHOTOOXIDATION OF L‐TRYPTOPHAN AND CHOLESTEROL BY SULFONATED METALLO PHTHALOCYANINES , 1986 .

[10]  E. Ben-hur,et al.  PHOTOSENSITIZATION OF CHINESE HAMSTER CELLS BY WATER‐SOLUBLE PHTHALOCYANINES * , 1986, Photochemistry and photobiology.

[11]  P. D. Smith,et al.  Photodynamic therapy with porphyrin and phthalocyanine sensitisation: quantitative studies in normal rat liver. , 1986, British Journal of Cancer.

[12]  E. Ben-hur,et al.  Photodynamic treatment of transplantable bladder tumors in rodents after pretreatment with chloroaluminum tetrasulfophthalocyanine. , 1986, The Journal of urology.

[13]  J. Bommer,et al.  Zinc tetrasulphophthalocyanine as a photodynamic sensitizer for biomolecules. , 1986, International journal of radiation biology and related studies in physics, chemistry, and medicine.

[14]  J. Spikes PHTHALOCYANINES AS PHOTOSENSITIZERS IN BIOLOGICAL SYSTEMS AND FOR THE PHOTODYNAMIC THERAPY OF TUMORS , 1986, Photochemistry and photobiology.

[15]  R. Langlois,et al.  BIOLOGICAL ACTIVITIES OF PHTHALOCYANINES–VII. PHOTOINACTIVATION OF V‐79 CHINESE HAMSTER CELLS BY SELECTIVELY SULFONATED GALLIUM PHTHALOCYANINES , 1987 .

[16]  W S Chan,et al.  PHOTOSENSITISING ACTIVITY OF PHTHALOCYANINE DYES SCREENED AGAINST TISSUE CULTURE CELLS , 1987, Photochemistry and photobiology.

[17]  Selective necrosis of malignant gliomas in mice using photodynamic therapy. , 1987, British Journal of Cancer.

[18]  M. Rodgers,et al.  LASER FLASH PHOTOKINETIC STUDIES OF ROSE BENGAL SENSITIZED PHOTODYNAMIC INTERACTIONS OF NUCLEOTIDES AND DNA , 1987, Photochemistry and photobiology.

[19]  P. Maillard,et al.  Structure des phtalocyanines tetra tertio-butylees: mecanisme de la synthese , 1987 .

[20]  H. Barr,et al.  Photodynamic therapy in the normal rat colon with phthalocyanine sensitisation. , 1987, British Journal of Cancer.

[21]  D. Kessel,et al.  TUMOR LOCALIZATION AND PHOTOSENSITIZATION BY SULFONATED DERIVATIVES OF TETRAPHENYLPORPHINE , 1987, Photochemistry and photobiology.

[22]  R. Langlois,et al.  BIOLOGICAL ACTIVITIES OF PHTHALOCYANINES—VI. PHOTOOXIDATION OF L‐TRYPTOPHAN BY SELECTIVELY SULFONATED GALLIUM PHTHALOCYANINES: SINGLET OXYGEN YIELDS AND EFFECT OF AGGREGATION , 1987, Photochemistry and photobiology.

[23]  R. Langlois,et al.  BIOLOGICAL ACTIVITIES OF PHTHALOCYANINES—V. PHOTODYNAMIC THERAPY OF EMT‐6 MAMMARY TUMORS IN MICE WITH SULFONATED PHTHALOCYANINES , 1987, Photochemistry and photobiology.

[24]  R. Langlois,et al.  Phthalocyanines as Sensitizers for Photodynamic Therapy of Cancer , 1988 .

[25]  R. Langlois,et al.  BIOLOGICAL ACTIVITIES OF PHTHALOCYANINES—VIII. CELLULAR DISTRIBUTION INV–79 CHINESE HAMSTER CELLS AND PHOTOTOXICITY OF SELECTIVELY SULFONATED ALUMINUM PHTHALOCYANINES , 1988, Photochemistry and photobiology.

[26]  Benoit Paquette,et al.  BIOLOGICAL ACTIVITIES OF PHTHALOCYANINES‐X. SYNTHESES AND ANALYSES OF SULFONATED PHTHALOCYANINES , 1988, Photochemistry and photobiology.