Evidence in the Japan Sea of microdolomite mineralization within gas hydrate microbiomes

[1]  S. Bowden,et al.  The application of surface enhanced Raman scattering to the detection of asphaltic petroleum in sediment extracts: deconvolving three component-mixtures using look-up tables of entire surface enhanced Raman spectra , 2019, Analytical Methods.

[2]  William A. Walters,et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 , 2019, Nature Biotechnology.

[3]  Xiaohua Zhang,et al.  Carbohydrate catabolic capability of a Flavobacteriia bacterium isolated from hadal water. , 2019, Systematic and applied microbiology.

[4]  Keita Yamada,et al.  Clumped isotope signatures of methane-derived authigenic carbonate presenting equilibrium values of their formation temperatures , 2019, Earth and Planetary Science Letters.

[5]  S. Toshchakov,et al.  Decoupling between sulfate reduction and the anaerobic oxidation of methane in the shallow methane seep of the Black sea , 2018, FEMS microbiology letters.

[6]  B. Misson,et al.  Prokaryotic community successions and interactions in marine biofilms: the key role of Flavobacteriia. , 2018, FEMS microbiology ecology.

[7]  Tsanyao Frank Yang,et al.  Origin of methane-rich natural gas at the West Pacific convergent plate boundary , 2017, Scientific Reports.

[8]  A. Kano,et al.  Gas hydrate estimates in muddy sediments from the oxygen isotope of water fraction , 2017 .

[9]  J. Roberts,et al.  Microbially catalyzed dolomite formation: From near-surface to burial , 2017 .

[10]  M. Kido,et al.  Compaction of smectite-rich mudstone and its influence on pore pressure in the deepwater Joetsu Basin, Sea of Japan , 2016 .

[11]  K. Shirai,et al.  Helium and methane sources and fluxes of shallow submarine hydrothermal plumes near the Tokara Islands, Southern Japan , 2016, Scientific Reports.

[12]  Bozhong Mu,et al.  High Frequency of Thermodesulfovibrio spp. and Anaerolineaceae in Association with Methanoculleus spp. in a Long-Term Incubation of n-Alkanes-Degrading Methanogenic Enrichment Culture , 2016, Front. Microbiol..

[13]  Philippe Andrey,et al.  MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ , 2016, Bioinform..

[14]  R. Simister,et al.  Examining the diversity of microbes in a deep-sea coral community impacted by the Deepwater Horizon oil spill , 2016 .

[15]  M. Unterseher,et al.  A cost-effective and efficient strategy for Illumina sequencing of fungal communities: A case study of beech endophytes identified elevation as main explanatory factor for diversity and community composition , 2016 .

[16]  Hailong Lu,et al.  Molecular and Isotopic Composition of Volatiles in Gas Hydrates and in Sediment from the Joetsu Basin, Eastern Margin of the Japan Sea , 2015 .

[17]  L. Benning,et al.  A route for the direct crystallization of dolomite , 2015 .

[18]  T. Bontognali,et al.  Characterization of environmental conditions during microbial Mg-carbonate precipitation and early diagenetic dolomite crust formation: Brejo do Espinho, Rio de Janeiro, Brazil , 2015 .

[19]  J. Parnell,et al.  Constraining the genetic relationships of 25-norhopanes, hopanoic and 25-norhopanoic acids in onshore Niger Delta oils using a temperature-dependent material balance , 2015 .

[20]  R. Matsumoto,et al.  Last glacial emplacement of methane-derived authigenic carbonates in the Sea of Japan constrained by diatom assemblage, carbon-14, and carbonate content , 2014 .

[21]  Yohey Suzuki,et al.  Distinct microbial communities thriving in gas hydrate-associated sediments from the eastern Japan Sea , 2014 .

[22]  P. Schmitt‐Kopplin,et al.  Water droplets in oil are microhabitats for microbial life , 2014, Science.

[23]  J. Horita Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures , 2014 .

[24]  J. Peckmann,et al.  Cretaceous methane-seep deposits from New Zealand and their fauna , 2013 .

[25]  I. Head,et al.  The controls on the composition of biodegraded oils in the deep subsurface - Part 3. The impact of microorganism distribution on petroleum geochemical gradients in biodegraded petroleum reservoirs , 2013 .

[26]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[27]  E. Roden,et al.  Dissolved sulfide-catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite , 2012 .

[28]  A. Rosell‐Melé,et al.  Bacterial dominance in subseafloor sediments characterized by methane hydrates. , 2012, FEMS microbiology ecology.

[29]  晶弘 八久保,et al.  日本海東縁ガスハイドレート調査 (MD179) における間隙水の地球化学 , 2012 .

[30]  S. Gorb,et al.  Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma , 2012 .

[31]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[32]  Miho Hirai,et al.  Microbial Diversity in Deep-sea Methane Seep Sediments Presented by SSU rRNA Gene Tag Sequencing , 2012, Microbes and environments.

[33]  R. Matsumoto,et al.  Geochemical constraints for the formation and dissociation of gas hydrate in an area of high methane flux, eastern margin of the Japan Sea , 2009 .

[34]  Hitoshi Tomaru,et al.  Formation and Collapse of Gas Hydrate Deposits in High Methane Flux Area of the Joetsu Basin, Eastern Margin of Japan Sea , 2009 .

[35]  Kunio Yoshida,et al.  U–Th dating of carbonate nodules from methane seeps off Joetsu, Eastern Margin of Japan Sea , 2008 .

[36]  R. Jenkins,et al.  Microbially induced formation of ooid‐like coated grains in the Late Cretaceous methane‐seep deposits of the Nakagawa area, Hokkaido, northern Japan , 2008 .

[37]  H. Wenk,et al.  Rietveld texture analysis from diffraction images , 2007 .

[38]  G. Dickens,et al.  Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea , 2007 .

[39]  C. Aoyama,et al.  Methane flux, seafloor gas hydrates, chloride anomalies and sulfate reduction : Joetsu regions, eastern margin of Japan Sea , 2007 .

[40]  U. Fehn,et al.  Origin and age of pore waters in an actively venting gas hydrate field near Sado Island, Japan Sea: Interpretation of halogen and 129I distributions , 2007 .

[41]  Masayoshi Takahashi,et al.  Encapsulation of saline solution by tetrahydrofuran clathrate hydrates and inclusion migration by recrystallization. , 2005, The journal of physical chemistry. B.

[42]  S. Bernasconi,et al.  Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments , 2005 .

[43]  G. Bohrmann,et al.  Clathrites: Archives of near-seafloor pore-fluid evolution (δ44/40Ca, δ13C, δ18O) in gas hydrate environments , 2005 .

[44]  J. Chanton,et al.  Thermogenic gas hydrates in the northern Cascadia margin , 2004 .

[45]  I. MacDonald,et al.  Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. , 2003, FEMS microbiology ecology.

[46]  Y. Fujita,et al.  Microbial Communities from Methane Hydrate-Bearing Deep Marine Sediments in a Forearc Basin , 2002, Applied and Environmental Microbiology.

[47]  Olaf Pfannkuche,et al.  A marine microbial consortium apparently mediating anaerobic oxidation of methane , 2000, Nature.

[48]  L. Martire,et al.  The role of bacteria in the formation of cold seep carbonates: geological evidence from Monferrato (Tertiary, NW Italy) , 1999 .

[49]  J. Mckenzie,et al.  Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions , 1997 .

[50]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[51]  A. Gunatilaka Spheroidal dolomites – origin by hydrocarbon seepage? , 1989 .

[52]  S. Sheppard,et al.  An isotopic study of siderites, dolomites and ankerites at high temperatures☆ , 1986 .

[53]  William E. Harrison,et al.  Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins , 1981 .

[54]  J. Rodriguez‐Blanco,et al.  ACC and vaterite as metastable intermediates in the solution based crystallization of CaCO3 , 2017 .

[55]  K. Sand,et al.  ACC and Vaterite as Intermediates in the Solution-Based Crystallization of CaCO3 , 2017 .

[56]  M. Turpin,et al.  Empirical Calibration for Dolomite Stoichiometry Calculation: Application on Triassic Muschelkalk- Lettenkohle Carbonates (French Jura) , 2012 .

[57]  Yohey Suzuki,et al.  A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments. , 2012, FEMS microbiology letters.

[58]  R. Matsumoto,et al.  EVOLUTION OF GAS HYDRATE MOUNDS OF JOETSU BASIN , EASTERN MARGIN OF JAPAN SEA : CONSTRAINTS FROM HIGH-RESOLUTION GEOPHYSICAL SURVEY BY AUV , 2011 .

[59]  M. Kinoshita,et al.  Heat Flow Distribution around the Joetsu Gas Hydrate Field, Western Joetsu Basin, Eastern Margin of the Japan Sea , 2009 .

[60]  松本 良,et al.  Methane flux, seafloor gas hydrates, chloride anomalies and sulfate reduction : Joetsu regions, eastern margin of Japan Sea , 2007 .

[61]  伸昭 門澤,et al.  基礎試錐「佐渡南西沖」の掘削結果に基づいた佐渡~富山湾海域における石油システムの考察 , 2006 .

[62]  R. Matsumoto,et al.  RecoveRy of Thick DeposiTs of Massive Gas hyDRaTes fRoM Gas chiMney sTRucTuRes , easTeRn MaRGin of Japan sea : Japan sea shallow Gas hyDRaTe pRoJecT , 2022 .