Paramagnetic electronic structure of CrSBr: Comparison between ab initio GW theory and angle-resolved photoemission spectroscopy
暂无分享,去创建一个
M. Katsnelson | M. Schilfgaarde | Zdenek Sofer | M. Bianchi | P. Hofmann | A. Rudenko | F. Dirnberger | M. Rosner | S. Acharya | D. Pashov | J. Klein | K. Mosina | Florian Dirnberger
[1] Zdenek Sofer,et al. Probing Defects and Spin‐Phonon Coupling in CrSBr via Resonant Raman Scattering , 2022, Advanced Functional Materials.
[2] Pu Chang,et al. Strong Spin-Phonon Coupling in Two-Dimensional Magnetic Semiconductor CrSBr , 2022, The Journal of Physical Chemistry C.
[3] M. Rohlfing,et al. The Bulk van der Waals Layered Magnet CrSBr is a Quasi-1D Material. , 2022, ACS nano.
[4] Michael E. Ziebel,et al. Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor , 2021, Nature Materials.
[5] A. Morpurgo,et al. Dynamic magnetic crossover at the origin of the hidden-order in van der Waals antiferromagnet CrSBr , 2022, Nature Communications.
[6] A. Morpurgo,et al. Quasi‐1D Electronic Transport in a 2D Magnetic Semiconductor , 2022, Advanced materials.
[7] Michael E. Ziebel,et al. Exciton-coupled coherent magnons in a 2D semiconductor , 2022, Nature.
[8] M. Katsnelson,et al. Excitons in Bulk and Layered Chromium Tri-Halides: From Frenkel to the Wannier-Mott Limit , 2021, 2110.08174.
[9] F. Ross,et al. Atomistic spin textures on-demand in the van der Waals layered magnet CrSBr , 2021, 2107.00037.
[10] M. Katsnelson,et al. Importance of charge self-consistency in first-principles description of strongly correlated systems , 2021, npj Computational Materials.
[11] Xiaodong Xu,et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor , 2021, Nature Materials.
[12] C. Nuckolls,et al. Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. , 2020, Nano letters.
[13] Xiaodong Xu,et al. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr , 2020, Advanced materials.
[14] Xiaofeng Qian,et al. Electrically tunable high Curie temperature two-dimensional ferromagnetism in van der Waals layered crystals , 2018 .
[15] Peng Wang,et al. Screening and Design of Novel 2D Ferromagnetic Materials with High Curie Temperature above Room Temperature. , 2018, ACS applied materials & interfaces.
[16] Cong Wang,et al. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). , 2018, Science bulletin.
[17] Yuanbo Zhang,et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.
[18] Michael A. McGuire,et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.
[19] S. Louie,et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.
[20] P. Hofmann,et al. Band dispersion in the deep 1s core level of|[nbsp]|graphene , 2010, 1001.4761.
[21] S. Hoffmann,et al. An undulator-based spherical grating monochromator beamline for angle-resolved photoemission spectroscopy , 2004 .
[22] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[23] A. Alú,et al. The bulk van der Waals layered magnet CrSBr is a quasi-1D quantum material , 2022 .
[24] S. Luryi,et al. Nuclear Instruments and Methods in Physics Research A247 (1986) 141-145 141 North-Holland, Amsterdam A GENERAL SOFTWARE MODULE FOR CAMAC, EQUIPMENT AND COMPOSITE VARIABLE CONTROL A. DANEELS and P. SKAREK , 2000 .
[25] M. Farle,et al. Journal of Magnetism and Magnetic Materials , 2022 .