Type IV pili and cell motility

Type IV pili (Tfp) mediate the movement of bacteria over surfaces without the use of flagella. These movements are known as social gliding in Myxococcus xanthus and twitching in organisms such as Pseudomonas aeruginosa and Neisseria gonorrhoeae. Tfp are localized polarly. Type IV pilins have a signature N‐terminal domain, which forms a coiled‐coil with other monomer units to polymerize a pilus fibre. At least 10 more proteins at the base of the fibre are conserved; they are related to the type II secretion system. Movements produced by Tfp range from short, jerky displacements to lengthy, smooth ones. Tfp also participate in cell–cell interactions, pathogenesis, biofilm formation, natural DNA uptake, auto‐aggregation of cells and development. What is the means by which Tfp bring about the movement of cells?

[1]  A. Darzins Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus , 1994, Molecular microbiology.

[2]  P. Manning,et al.  The tcp gene cluster of Vibrio cholerae. , 1997, Gene.

[3]  A. Darzins,et al.  Molecular genetic analysis of type-4 pilus biogenesis and twitching motility using Pseudomonas aeruginosa as a model system--a review. , 1997, Gene.

[4]  J. Ottow Ecology, physiology, and genetics of fimbriae and pili. , 1975, Annual review of microbiology.

[5]  S. Lory,et al.  A second prepilin peptidase gene in Escherichia coli K‐12 , 1998, Molecular microbiology.

[6]  J. Mattick,et al.  Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. , 1991, Gene.

[7]  A. Kingsman,et al.  The requirements for conjugal DNA synthesis in the donor strain during flac transfer. , 1978, Journal of molecular biology.

[8]  S. Lory,et al.  Mutations in the consensus ATP-binding sites of XcpR and PilB eliminate extracellular protein secretion and pilus biogenesis in Pseudomonas aeruginosa , 1993, Journal of bacteriology.

[9]  D. Kaiser,et al.  The tgl gene: social motility and stimulation in Myxococcus xanthus , 1997, Journal of bacteriology.

[10]  D. Kaiser,et al.  Social gliding is correlated with the presence of pili in Myxococcus xanthus. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. Youderian,et al.  A Chaperone in the HSP70 Family Controls Production of Extracellular Fibrils in Myxococcus xanthus , 1998, Journal of bacteriology.

[12]  M. Fussenegger,et al.  Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae--a review. , 1997, Gene.

[13]  R M Macnab,et al.  Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. , 1977, Journal of molecular biology.

[14]  D. Kaiser,et al.  The Myxococcus xanthus pilQ(sglA) Gene Encodes a Secretin Homolog Required for Type IV Pilus Biogenesis, Social Motility, and Development , 1999, Journal of bacteriology.

[15]  J. Engel,et al.  Identification of Pseudomonas aeruginosa genes required for epithelial cell injury , 1997, Molecular microbiology.

[16]  M. Wolfgang,et al.  Suppression of an absolute defect in type IV pilus biogenesis by loss-of-function mutations in pilT, a twitching motility gene in Neisseria gonorrhoeae. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Zusman,et al.  Regulation of directed motility in Myxococcus xanthus , 1997, Molecular microbiology.

[18]  Dale Kaiser,et al.  Cell movement and its coordination in swarms of myxococcus xanthus , 1983 .

[19]  M. Surber,et al.  Type II protein secretion by Pseudomonas aeruginosa: genetic suppression of a conditional mutation in the pilin‐like component XcpT by the cytoplasmic component XcpR , 1998, Molecular microbiology.

[20]  J. Mattick,et al.  Response from Mattick and Alm: common architecture of type 4 fimbriae and complexes involved in macromolecular traffic , 1995 .

[21]  J. Mattick,et al.  The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa--a review. , 1996, Gene.

[22]  A. Darzins The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY , 1993, Journal of bacteriology.

[23]  W. Shi,et al.  A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility , 1998, Molecular microbiology.

[24]  S. Lory,et al.  Structure-function and biogenesis of the type IV pili. , 1993, Annual review of microbiology.

[25]  S. Lory,et al.  Interactions of the components of the general secretion pathway: role of Pseudomonas aeruginosa type IV pilin subunits in complex formation and extracellular protein secretion , 1997, Molecular microbiology.

[26]  D. Kaiser,et al.  Regulation of expression of the pilA gene in Myxococcus xanthus , 1997, Journal of bacteriology.

[27]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[28]  Wolfgang Baumeister,et al.  The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria , 1998, Current Biology.

[29]  J. Henrichsen,et al.  Bacterial surface translocation: a survey and a classification. , 1972, Bacteriological reviews.

[30]  J. Tainer,et al.  Type-4 pilus-structure: outside to inside and top to bottom--a minireview. , 1997, Gene.

[31]  M. Dworkin,et al.  Isolated fibrils rescue cohesion and development in the Dsp mutant of Myxococcus xanthus , 1994, Journal of bacteriology.

[32]  L. Shimkets,et al.  Regulation of cohesion-dependent cell interactions in Myxococcus xanthus , 1993, Journal of bacteriology.

[33]  M. Silverman,et al.  Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus , 1988, Cell.

[34]  M. Eisenbach,et al.  Effect of mechanical removal of pili on gliding motility of Myxococcus xanthus , 1992, Journal of bacteriology.

[35]  P. Berggren,et al.  Cell Signaling by the Type IV Pili of Pathogenic Neisseria* , 1998, The Journal of Biological Chemistry.

[36]  J. S. Parkinson Signal transduction schemes of bacteria , 1993, Cell.

[37]  A. Pugsley Multimers of the precursor of a type IV pilin‐like component of the general secretory pathway are unrelated to pili , 1996, Molecular microbiology.

[38]  D. Zusman,et al.  The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Homma,et al.  The sodium‐driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression , 1996, Molecular microbiology.

[40]  T. MacRae,et al.  The function of fimbriae in Myxococcus xanthus. II. The role of fimbriae in cell-cell interactions. , 1979, Canadian journal of microbiology.

[41]  D. Kaiser,et al.  The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus , 1998, Molecular microbiology.

[42]  H. Bernstein,et al.  Membrane protein biogenesis: the exception explains the rules. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. E. Bradley,et al.  Shortening of Pseudomonas aeruginosa pili after RNA-phage adsorption. , 1972, Journal of general microbiology.

[44]  D. E. Bradley A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. , 1980, Canadian journal of microbiology.

[45]  S. Lory,et al.  Amino Acid Substitutions in PilD, a Bifunctional Enzyme ofPseudomonas aeruginosa , 1998, The Journal of Biological Chemistry.

[46]  M. Dworkin,et al.  Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding , 1997, Journal of bacteriology.

[47]  H. Reichenbach,et al.  Further characterization and in situ localization of chain-like aggregates of the gliding bacteria Myxococcus fulvus and Myxococcus xanthus , 1997, Journal of bacteriology.

[48]  John A. Tainer,et al.  Structure of the fibre-forming protein pilin at 2.6 Å resolution , 1995, Nature.

[49]  M. Russel Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. , 1998, Journal of molecular biology.

[50]  M. Wolfgang,et al.  PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae , 1998, Molecular microbiology.

[51]  D. Dubnau,et al.  Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of Bacillus subtilis , 1998, Molecular microbiology.

[52]  A. Darzins The Pseudomonas aeruginosa pilK gene encodes a chemotactic methyltransferase (CheR) homologue that is translationally regulated , 1995, Molecular microbiology.

[53]  P. Hartzell Complementation of sporulation and motility defects in a prokaryote by a eukaryotic GTPase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[54]  P. Cossart,et al.  Host-pathogen interactions during entry and actin-based movement of Listeria monocytogenes. , 1997, Annual review of genetics.

[55]  D. Kaiser,et al.  Alignment enhances the cell-to-cell transfer of pilus phenotype. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Mattick,et al.  Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa , 1994, Molecular microbiology.

[57]  D. Kaiser,et al.  The Myxococcus xanthuspilT locus is required for social gliding motility although pili are still produced , 1997, Molecular microbiology.

[58]  D. E. Bradley,et al.  The adsorption of Pseudomonas aeruginosa pilus-dependent bacteriophages to a host mutant with nonretractile pili. , 1974, Virology.

[59]  Samuel S. Wu,et al.  Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus , 1995, Molecular microbiology.

[60]  J. Seyer,et al.  Processing of TCP pilin by TcpJ typifies a common step intrinsic to a newly recognized pathway of extracellular protein secretion by gram-negative bacteria. , 1991, Genes & development.

[61]  P. Manning,et al.  Type-4 pili: biogenesis, adhesins, protein export and DNA import. Proceedings of a workshop. Rottach-Egern, Germany, 26-29 November 1995. , 1997, Gene.

[62]  J. Henrichsen Twitching motility. , 1983, Annual review of microbiology.

[63]  G. Schoolnik,et al.  Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. , 1998, Science.

[64]  J. Henrichsen,et al.  The occurrence of twitching motility among gram-negative bacteria. , 2009, Acta pathologica et microbiologica Scandinavica. Section B, Microbiology.

[65]  A. Pugsley The complete general secretory pathway in gram-negative bacteria. , 1993, Microbiological reviews.