A Convex Optimization Approach to the Rational Covariance Extension Problem

In this paper we present a convex optimization problem for solving the rational covariance extension problem. Given a partial covariance sequence and the desired zeros of the modeling filter, the poles are uniquely determined from the unique minimum of the corresponding optimization problem. In this way we obtain an algorithm for solving the covariance extension problem, as well as a constructive proof of Georgiou's seminal existence result and his conjecture, a stronger version of which we have resolved in [Byrnes et al., IEEE Trans. Automat. Control, AC-40 (1995), pp. 1841--1857].

[1]  Presidenza G. Albeggiani Rendiconti del circolo matematico di Palermo , 1887 .

[2]  Journal für die reine und angewandte Mathematik , 1893 .

[3]  C. Carathéodory Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , 1907 .

[4]  C. Carathéodory Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .

[5]  U. Grenander,et al.  Statistical analysis of stationary time series , 1958 .

[6]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[7]  K. Stevens,et al.  Reduction of Speech Spectra by Analysis‐by‐Synthesis Techniques , 1961 .

[8]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[9]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[10]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[11]  T.H. Crystal,et al.  Linear prediction of speech , 1977, Proceedings of the IEEE.

[12]  M.G. Bellanger,et al.  Digital processing of speech signals , 1980, Proceedings of the IEEE.

[13]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[14]  R. Kálmán Realization of Covariance Sequences , 1982 .

[15]  J. Cadzow,et al.  Spectral estimation: An overdetermined rational model equation approach , 1982, Proceedings of the IEEE.

[16]  Paul Van Dooren,et al.  Speech modelling and the trigonometric moment problem , 1982 .

[17]  S.A. Kassam,et al.  Robust techniques for signal processing: A survey , 1985, Proceedings of the IEEE.

[18]  I. Schur,et al.  On Power Series Which are Bounded in the Interior of the Unit Circle II , 1986 .

[19]  David K. Smith,et al.  Mathematical Programming: Theory and Algorithms , 1986 .

[20]  Tryphon T. Georgiou,et al.  Realization of power spectra from partial covariance sequences , 1987, IEEE Trans. Acoust. Speech Signal Process..

[21]  李幼升,et al.  Ph , 1989 .

[22]  Anders Lindquist,et al.  Geometry of the Kimura-Georgiou parametrization of modelling filters , 1989 .

[23]  Bart De Moor,et al.  Subspace algorithms for the stochastic identification problem, , 1993, Autom..

[24]  C. Byrnes,et al.  Toward a solution of the minimal partial stochastic realization problem , 1994 .

[25]  C. Byrnes,et al.  A complete parameterization of all positive rational extensions of a covariance sequence , 1995, IEEE Trans. Autom. Control..

[26]  Anders Lindquist,et al.  Canonical correlation analysis, approximate covariance extension, and identification of stationary time series , 1996, Autom..

[27]  C. Byrnes,et al.  On the partial stochastic realization problem , 1997, IEEE Trans. Autom. Control..